目录
各位小伙伴大家好,上期我们分享了关于ElasticSearch以及Kibana的安装以及配置。关于ElasticSearch在不少工作场景中都有出现,但是实际开发中我们也会遇到形形色色数据库和检索引擎。我们需要逐一比对,从而选择最适合的技术才是最重要的。
1、关系型数据库-MySql
MySQL是最常见也是我们学习和工作中用的最多的数据库之一,是一个流行的关系型数据库管理系统,他的优点有这么些:
1)易于学习和使用:MySQL采用SQL语言进行数据操作,语法简单易懂,学习曲线较平缓。
2)开源免费:MySQL是开源软件,可以免费获取和使用,节省了企业成本。
3)良好的性能:MySQL经过优化,具有高效的性能和稳定性,适用于大型数据存储和高并发访问。
4)多种存储引擎选择:MySQL支持多种存储引擎,可以根据需求选择合适的引擎进行配置。
5)支持事务处理:MySQL支持事务处理,可以保证数据的完整性和一致性。
6)可扩展性强:MySQL支持分布式数据库集群的部署,可以灵活扩展性能和存储容量。
相对于其他数据库来说简单易学,对于中小企业开发来说简单实用方便维护。但是在实际开发场景中也不乏有数据量大的时候,时而百万,千万,亿级别的数据并不是不会遇到。虽然说MySql可以通过建立索引等方式实现数据的快速读取,但是不乏有一些特殊场景导致索引失效。
并且操作MySQL对开发人人员编写SQL的工地也有一定考验。综上所述,在大数据量的时候使用MySQL并不稳妥,主要体现在以下几个方面:
1)性能瓶颈:MySQL在处理大规模数据时,性能可能会受到影响,导致查询速度变慢。
2)扩展性限制:MySQL的单机架构在处理大规模数据时可能会出现扩展性问题,难以满足高并发和大容量数据存储需求。
3)索引优化难度:随着数据量增加,索引维护和优化会变得更加困难,可能导致查询效率下降。
4)实时分析能力受限: