目录
搜索树
1.概念
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值若它的右子树不为空,则右子树上所有节点的值都大于根节点的值它的左右子树也分别为二叉搜索树
2. 操作-查找
查找规律:
若根节点不为空:
如果根节点val = 查找val,返回true
如果根节点val > 查找val,从该节点左子树查找
如果根节点val < 查找val,从该节点右子树查找
若最后根节点为空,返回false
3. 操作-插入
1.如果树为空树,即根为null,就可以直接插入。
2.如果树非空树,应按照查找逻辑找到插入位置,插入新节点。
通过查找的规则来寻找插入节点,每次插入的节点都为叶子节点!
注意相同的key是不可以插入的!
从根节点开始,根据查找的规则用cur进行节点遍历,同时用prev来存储遍历的前一个节点,直到cur == null时,此时prev已经遍历到叶子节点,再进行判断key与该叶子节点的大小关系来决定放在left还是right。
4. 操作-删除
设待删除结点为 cur, 待删除结点的双亲结点为 parent
分为三种情况:
1. cur.left == null2. cur.right == null3. cur.left != null && cur.right != null
1. cur.left == null
1. cur 是 root,则 root = cur.right
2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right
3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right
2. cur.right == null
1. cur 是 root,则 root = cur.left
2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left
3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left
3. cur.left != null && cur.right != null
对于这一种情况,我们采用替罪羊的方式进行删除,即寻找要删除节点的左子树的最右端的一个节点,该节点的val为左子树的最大值,同时也满足小于要删除节点的右子树的所有节点,用该值填补到被删除节点,所以问题就转变为:处理这个替换节点原位置的删除问题了。而这个替换节点作为左子树的最右端,它的 right 为 null ,所以就是上述cur.right == null这一种情况了,问题也就迎刃而解了。
或者寻找要删除节点的右子树的最左端的一个节点(中序下的第一个结点),该节点的val为右子树的最小值,同时也满足大于要删除节点的左子树的所有节点。用该值填补到被被删除节点,再处理这个替换节点原位置的删除问题了。这个替换节点作为右子树的最左端,它的 left 为 null ,也就是上述cur.left == null这一种情况了。
如删除上图的cur,可以采用以下两种方式。
易错点!!!
此时,还有一种特殊情况需要注意,以右树最左节点为例:tmp=cur.right
在上述的讨论情况中,到最后删除替换节点原位置这一阶段时,我们采用parent.left = tmp.right的方法,如下图情况一。
但此时我们忽略了另一种情况:一开始的接收到的tmp就已经是右子树的最左端了,如下图情况二。此时要删除替换节点原位置的时候,就不可以再用parent.left = tmp.right这条语句了!!!而应该用parent.right = tmp.right。
所以再完成代码的时候应该添加判断语句parent.right == tmp,成立实现情况二,不成立实现情况一。(结合下面代码分析效果更佳)
5. 代码实现
class BinarySearchTree{
static class TreeNode{
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int val){
this.val = val;
}
}
public TreeNode root = null;
/**
* 查找一个val 是不是在当前的搜索树当中
* @param val
* @return 有返回 没有返回null
*/
public boolean search(int val){
TreeNode cur = root;
while (cur != null){
if (cur.val<val){
cur = cur.right;
} else if (cur.val>val) {
cur = cur.left;
}else{
return true;
}
}
return false;
}
//中序遍历
public void inorder(TreeNode root){
if (root == null){
return;
}
inorder(root.left);
System.out.print(root.val+" ");
inorder(root.right);
}
/**
* 插入元素key
* @param key
* @return
* 每次插入都是插入在叶子结点!!!!
*/
public boolean insert(int key){
if (root == null){
root = new TreeNode(key);
return true;
}
TreeNode cur = root;
TreeNode prev = null;
while (cur!=null){
if (cur.val>key){
prev = cur;
cur = cur.left;
}else if (cur.val<key){
prev = cur;
cur = cur.right;
}else {
return false; //相同的key是不能进行插入的
}
}
//cur = null 了
//判断key大于prev还是小于prev来判断在左边还是右边
TreeNode newNode = new TreeNode(key);
if (key> prev.val){
prev.right = newNode;
}else{
prev.left = newNode;
}
return true;
}
public void remove(int key){
TreeNode cur = root;
TreeNode prev = null;
while (cur!=null){
if (key> cur.val){
prev = cur;
cur = cur.right;
} else if (key< cur.val) {
prev = cur;
cur = cur.left;
}else {
removeNode(cur,prev);
return;
}
}
}
public void removeNode(TreeNode cur,TreeNode prev){
if (cur.left == null){ //该节点左边为null
if (cur == root){ //该节点为根结点
root = cur.right;
} else if (cur == prev.left) { //该节点为prev的左边
prev.left = cur.right;
}else { //该节点为prev的右边
prev.right = cur.right;
}
} else if (cur.right == null) { //该节点右边为null
if (cur == root){
root = cur.left;
} else if (cur == prev.left) {
prev.left = cur.left;
}else {
prev.right = cur.left;
}
}else{ //该节点左右两边都不为null
TreeNode tmp = cur.right; //找到左树最右节点或者右树最左节点来作为删除节点的值,然后操作删除左树最右节点或者右树最左节点。一般以右树最左节点来计算
TreeNode tmpParent = cur;
while (tmp.left!=null){
tmpParent = tmp;
tmp = tmp.left; //找到右树最左节点后,剩下的操作就是将该节点值赋给删除的节点,然后操作删除右树的最左节点
}
cur.val = tmp.val;
if (tmpParent.right == tmp){
tmpParent.right = tmp.right; //一开始的tmp就已经是右树最左端了!!!
}else {
tmpParent.left = tmp.right; //非一开始的tmp就已经是右树最左端了!!!
}
}
}
}