JAVA学习-练习试用Java实现“蚁群算法:解决TSP问题或资源分配问题”

问题:

       java语言编辑,蚁群算法:解决TSP问题或资源分配问题。

解答思路:

       蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的启发式算法,可以用来解决诸如旅行商问题(TSP,Traveling Salesman Problem)和资源分配问题等组合优化问题。以下是一个使用Java语言实现的简单蚁群算法示例,用于解决TSP问题。

       首先,定义一些基本的类和结构:

       1. Graph:表示城市之间的距离图。

       2. Ant:表示一只蚂蚁,它从一个城市开始,随机选择下一个城市。

       3. AntColony:管理蚂蚁群,包括初始化、放置蚂蚁、迭代搜索和更新信息素。

       下面是一个简化的Java代码示例:

import java.util.ArrayList;

import java.util.List;

import java.util.Random;


class City {

    int x, y;


    public City(int x, int y) {

        this.x = x;

        this.y = y;

    }


    public double distanceTo(City city) {

        return Math.sqrt(Math.pow(this.x - city.x, 2) + Math.pow(this.y - city.y, 2));

    }

}


class Ant {

    private static final int NUM_CITIES = 5;

    private static final double Q = 100.0;

    private static final double RHO = 0.5;

    private static final double ALFA = 1.0;

    private static final double BETA = 2.0;

    private static final double PHEROMONE_EVAPORATION_RATE = 0.5;


    private List<City> path = new ArrayList<>();

    private double totalDistance;

    private double pheromones[] = new double[NUM_CITIES];


    public Ant(City startCity) {

        path.add(startCity);

        totalDistance = 0;

        for (int i = 0; i < NUM_CITIES; i++) {

            pheromones[i] = 1.0;

        }

    }


    public void nextStep(Graph graph) {

        City currentCity = path.get(path.size() - 1);

        double probabilities[] = new double[NUM_CITIES];

        double denominator = 0;


        for (int i = 0; i < NUM_CITIES; i++) {

            if (!path.contains(graph.cities[i])) {

                double distance = currentCity.distanceTo(graph.cities[i]);

                double heuristicValue = Math.pow(pheromones[i], ALFA) * Math.pow(1 / distance, BETA);

                probabilities[i] = heuristicValue;

                denominator += heuristicValue;

            }

        }


        double randomValue = Math.random();

        int nextCityIndex = 0;

        for (int i = 0; i < NUM_CITIES; i++) {

            if (randomValue < probabilities[i] / denominator) {

                nextCityIndex = i;

                break;

            }

        }


        City nextCity = graph.cities[nextCityIndex];

        path.add(nextCity);

        totalDistance += currentCity.distanceTo(nextCity);

        currentCity = nextCity;

    }


    public void updatePheromones() {

        for (int i = 0; i < NUM_CITIES; i++) {

            pheromones[i] *= (1 - PHEROMONE_EVAPORATION_RATE);

        }

        for (int i = 0; i < path.size() - 1; i++) {

            int from = path.get(i).hashCode();

            int to = path.get(i + 1).hashCode();

            pheromones[from]++;

            pheromones[to]++;

        }

    }


    public double getTotalDistance() {

        return totalDistance;

    }

}


class Graph {

    List<City> cities = new ArrayList<>();


    public Graph() {

        cities.add(new City(0, 0));

        cities.add(new City(1, 5));

        cities.add(new City(2, 2));

        cities.add(new City(5, 5));

        cities.add(new City(7, 1));

        // ... 可以继续添加城市

    }


    public City getCity(int index) {

        return cities.get(index);

    }

}


class AntColony {

    private static final int NUM_ANTS = 10;

    private static final int MAX_ITERATIONS = 100;


    private List<Ant> ants = new ArrayList<>();

    private Graph graph;


    public AntColony(Graph graph) {

        this.graph = graph;

        for (int i = 0; i < NUM_ANTS; i++) {

            ants.add(new Ant(graph.getCity(0)));

        }

    }


    public void run() {

        for (int i = 0; i < MAX_ITERATIONS; i++) {

            for (Ant ant : ants) {

                while (ant.getTotalDistance() < graph.getCity(0).distanceTo(graph.getCity(0))) {

                    ant.nextStep(graph);

                }

                ant.updatePheromones();

            }

        }

    }


    public double getBestPathDistance() {

        double bestDistance = Double.MAX_VALUE;

        for (Ant ant : ants) {

            if (ant.getTotalDistance() < bestDistance) {

                bestDistance = ant.getTotalDistance();

            }

        }

        return bestDistance;

    }

}


public class AntColonyOptimization {

    public static void main(String[] args) {

        Graph graph = new Graph();

        AntColony antColony = new AntColony(graph);

        antColony.run();

        double bestPathDistance = antColony.getBestPathDistance();

        System.out.println("Best path distance: " + bestPathDistance);

    }

}

       需要注意,这个代码是一个非常简化的示例,它没有实现一些蚁群算法的高级特性,如信息素蒸发策略、全局信息素更新、多个蚂蚁同时搜索等。在实际应用中,可能需要根据具体问题的特点和需求来调整算法参数和实现细节。

(文章为作者在学习java过程中的一些个人体会总结和借鉴,如有不当、错误的地方,请各位大佬批评指正,定当努力改正,如有侵权请联系作者删帖。)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值