- 博客(22)
- 收藏
- 关注
原创 关键点检测(Pose)全流程+实战代码(coco8-pose.yaml示例)
《YOLO实战(六):关键点检测全流程与代码示例》摘要 本文详细介绍了YOLOv8实现关键点检测(Pose)任务的完整流程。
2025-07-11 20:45:15
738
原创 OBB旋转框检测配置与训练全流程(基于 DOTA8 数据集)
本文介绍了YOLOv8在OBB(旋转框)检测任务中的实战应用。主要内容包括:OBB检测的概念及其适用场景(如斜拍交通标志、遥感图像等);YOLOv8对OBB任务的原生支持方式;DOTA8数据集的标准配置方法(dota8.yaml);旋转框标签的特殊格式要求;OBB专用模型的选择与训练流程(含Python和命令行两种方式);以及训练后的推理可视化技巧。文章还提供了进阶优化建议,如迁移学习、参数调优和多卡训练等,为处理带角度的目标检测任务提供了完整解决方案。
2025-07-11 20:38:16
814
原创 LabelImg标注工具详解与使用教程
【YOLO交通标志识别实战(四)】LabelImg标注工具使用教程 本文详细介绍了如何使用LabelImg工具进行YOLO格式的数据标注。
2025-07-10 18:52:20
880
原创 交通标志数据集裁剪与标准化全流程
🚀 YOLOv8交通标志数据集裁剪与标准化全流程 本文详细介绍如何将大尺寸交通标志数据集裁剪为适合YOLOv8训练的640×640小图。通过Python脚本实现: 1️⃣ 读取YOLO格式数据 2️⃣ 按指定尺寸平铺裁剪(可调整步长/重叠) 3️⃣ 同步更新标签坐标 4️⃣ 输出标准目录结构 关键优势: ✅ 提升小目标检测效果 ✅ 降低显存占用 ✅ 保持标签与图像对齐 ✅ 直接兼容YOLOv8训练 提供完整可调参数脚本,支持训练/验证集同步处理,输出可直接用于模型训练。 (摘要字数:146字)
2025-07-10 15:22:02
479
原创 YOLOv8 的训练配置和全流程命令教程
摘要:本文详细介绍了使用YOLOv8 Python API进行模型训练的全流程。主要内容包括:1) YOLOv8安装与环境配置;2) data.yaml文件编写规范;3) Python训练脚本实现;4) 关键参数说明与调优技巧;5) 训练结果保存与评估方法。特别提供了完整的模型评估示例,包括验证集评估指标获取、可视化结果分析以及批量模型比较方法。文章还介绍了自定义数据增强和高级配置选项,为读者提供了从基础训练到高级调参的完整解决方案。与命令行方式相比,Python API更适合自动化测试、项目集成和过程控制
2025-07-10 15:08:43
621
原创 使用Kaggle数据集上YOLO 格式的交通标志数据集
本文详细介绍了如何下载并标准化重组Kaggle上的YOLO格式交通标志数据集。主要内容包括:使用Python通过kagglehub下载数据集;分析原始文件结构;编写Bash脚本将图像和标签按8:2比例拆分为YOLO标准训练目录结构(images/train、images/val、labels/train、labels/val)。文中提供了完整的Python下载脚本和Bash重组脚本,并说明如何修改划分比例。最后给出了适配YOLOv8训练的data.yaml配置示例,为后续模型训练做好准备。
2025-07-10 14:30:34
931
原创 Detectron2 训练配置与流程说明(Faster-RCNN为例)
本文详细介绍了使用Detectron2框架训练Faster R-CNN模型的全流程,包括数据集注册、模型选择与配置、关键参数说明、显存优化和分布式训练设置。重点阐述了以COCO格式注册自定义数据集的方法,Faster R-CNN模型的基础配置选项,以及学习率、批次大小等超参数的优化原则。文档还包含训练过程中的评估机制说明和CUDA显存管理技巧,为基于Detectron2的目标检测任务实施提供了完整的技术参考。
2025-06-21 17:14:05
821
2
原创 YOLO 格式数据转换为 COCO 格式用于 Detectron2 和 RF-DETR 等目标检测框架
本文介绍了将YOLO格式目标检测数据转换为COCO格式的完整方法,适用于Detectron2和RF-DETR等框架。主要内容包括:1) YOLO格式使用TXT文件存储归一化坐标,COCO格式采用JSON文件存储像素坐标;2) 转换关键步骤包括读取图像尺寸、坐标转换和生成JSON文件;3) 提供了完整的Python实现代码,支持批量处理训练集和验证集。该转换方法简单易用,能快速适配主流目标检测框架的数据格式要求。
2025-06-21 17:03:18
420
原创 Hugging Face 模型/数据集国内加速下载指南
本文介绍了国内开发者使用Hugging Face模型和数据集时的加速下载方案,重点推荐HF-Mirror镜像站。文章详细讲解了四种加速方法:网页直接下载、huggingface-cli命令行工具、hfd高速下载器以及非侵入式环境变量设置。HF-Mirror提供稳定快速的下载服务,支持gated模型的token授权下载,解决了国内用户访问Hugging Face时常见的下载速度慢、断连等问题。文中还包含常见问题解答和参考链接,助力国内AI开发者高效获取模型资源。
2025-06-21 15:30:21
1133
1
原创 目标检测介绍
本文系统介绍了目标检测任务的理论与实践。从定义和背景入手,阐述了目标检测分类+回归的本质,解析了RCNN、YOLO到Transformer的方法演进,重点讲解了Anchor机制、FPN、IoU损失等核心技术。同时概述了评估指标和应用场景,并指出当前研究热点如小目标检测、遮挡处理等挑战。最后给出学习路线建议,包括理论入门、框架学习、项目实战和论文阅读等阶段资源推荐。适用于计算机视觉领域希望系统掌握目标检测技术的读者。
2025-05-28 09:16:25
762
原创 利用 dlib 实现人脸关键点检测及三点距离测量
本文介绍了如何利用dlib库实现人脸关键点检测及三点距离测量。dlib提供了68个关键点检测模型,能够精确定位人脸的关键部位。文章详细说明了如何通过dlib检测左内眼角、右内眼角和鼻尖三个关键点,并计算它们之间的欧式距离。
2025-05-23 16:33:36
388
原创 三维人脸重建发展历程与研究现状
本文介绍了三维人脸重建技术的发展历程与研究现状,重点探讨了从3DMM到深度学习的演变过程。三维人脸重建旨在从二维图像中恢复三维人脸形状,广泛应用于虚拟人建模、安防、AR/VR、医疗整形等领域。文章详细介绍了3DMM、3DDFA、PRNet、DECA和MeshGraphormer等主流方法,并推荐了常用数据集。同时,文章指出了当前技术面临的挑战,如光照与遮挡、表情迁移、少样本泛化和推理速度等问题。
2025-05-23 16:31:26
743
原创 Miniconda 环境配置
本教程详细介绍了在 Windows 系统上配置计算机视觉开发环境的步骤。首先,安装轻量级的 Miniconda 作为 Python 环境管理工具,并创建一个专用的虚拟环境。接着,根据硬件条件安装支持 GPU 或 CPU 的 PyTorch 框架,并配置常用的视觉工具包如 OpenCV 和 matplotlib。最后,安装 Ultralytics 库以支持 YOLOv8 模型的使用。教程还提供了环境配置的验证方法和环境导出技巧,确保开发者能够顺利开始计算机视觉项目的开发。
2025-05-22 10:19:34
766
原创 在 Detectron2 中实现 YOLO 风格的目标检测评估指标
本文介绍了如何在 Detectron2 中实现 YOLO 风格的目标检测评估指标。Detectron2 默认使用 COCOEvaluator 输出 COCO 风格的评估指标,如 AP@[.5:.95],但这些指标在工业部署或学术报告中不够直观。为了输出更简洁的 AP50、Precision 和 Recall 指标,可以通过继承 COCOEvaluator 并重写其方法,自定义评估器 YoloStyleEvaluator。该评估器固定 IoU 阈值为 0.5,并提取 Precision 和 Recall 值。
2025-05-22 09:37:31
404
原创 使用 Detectron2 训练自定义目标检测模型
Detectron2 是 Facebook AI Research 开发的高效目标检测框架,支持多种先进算法。本文详细介绍了如何使用 Detectron2 训练自定义目标检测模型。首先,需安装 Python 3.8+、PyTorch 和 Detectron2,并配置 CUDA 环境。接着,准备 COCO 格式的数据集,并使用 LabelMe 或 Roboflow 生成标注文件。然后,注册数据集并设置模型配置,包括选择预训练模型、调整学习率等参数。启动训练后,模型权重和日志将保存在 output/ 文件夹中。
2025-05-22 09:25:36
505
原创 使用 Ultralytics YOLOv8 训练自定义目标检测模型
本文详细介绍了如何使用 Ultralytics YOLOv8 训练自定义目标检测模型。首先,配置 Python 环境并安装 ultralytics 库。接着,准备自定义数据集,确保数据格式符合 YOLO 标准,并创建相应的 YAML 配置文件。然后,通过命令行启动训练,设置任务类型、模型、数据路径、训练轮数等参数。训练完成后,可以查看生成的损失、精度等指标,并使用最佳模型进行推理测试。最后,文章提供了评估模型性能的代码示例。整个过程简洁明了,适合开发者快速上手并实现项目落地。
2025-05-22 09:16:13
915
原创 VS Code 配置 LaTeX 写作环境完全指南
本文详细介绍了如何在 VS Code 中配置 LaTeX 写作环境,涵盖了从安装必备组件到高级功能的全面指南。首先,用户需要安装 LaTeX 发行版(如 TeX Live 或 MiKTeX)和 VS Code 插件(如 LaTeX Workshop)。接着,通过修改 settings.json 和 keybindings.json 文件,用户可以自定义编译、查看快捷键等基础配置。文章还提供了高效写作技巧,如使用代码片段和多文件项目管理,并介绍了高级功能如反向同步、公式预览和参考文献管理。此外,针对常见问题(
2025-05-17 11:28:43
712
原创 WinSCP文件传输 + VS Code远程开发完整指南
本文详细介绍了如何通过WinSCP和VS Code实现高效的文件传输与远程开发。首先,WinSCP的安装与配置包括连接阿里云服务器、高级设置及文件操作技巧。接着,VS Code的远程开发配置涉及必备插件的安装、SSH连接的设置及远程开发功能的使用。文章还提供了组合工作流的实战案例,包括项目上传、实时开发和调试运行,并分享了安全加固与性能优化的建议。最后,针对常见问题如连接超时、文件同步冲突和远程扩展安装失败,提供了解决方案。通过本指南,用户可以轻松实现远程开发环境的搭建与优化。
2025-05-17 11:27:03
1004
原创 使用FRP配置SSH远程访问
本文详细介绍了如何使用FRP(Fast Reverse Proxy)配置SSH远程访问。首先,准备工作包括阿里云服务器、本地Linux设备和域名的准备,以及阿里云安全组的配置。接着,服务端配置涉及FRP的下载、安装和启动,客户端配置则包括FRP的配置和启动。此外,还提供了Systemd服务的配置方法,以及连接测试和高级配置技巧。最后,文章强调了安全建议,如修改默认端口、使用强密码和密钥认证,以及防火墙限制。常见问题部分解答了新旧版本兼容性、日志查看和多设备配置等问题。通过本文,用户可以轻松实现内网设备的远程
2025-05-17 11:22:44
441
原创 pip 使用清华源
本教程详细介绍了如何临时和永久配置 pip 使用清华源,以加速 Python 包的下载。临时使用清华源只需在安装包时指定镜像源地址,而永久配置则可以通过修改 pip 配置文件或使用命令行设置。教程还提供了验证配置是否生效的方法,并提醒了升级 pip 和恢复默认源的注意事项。选择清华源的原因在于其速度快和稳定性高,适合国内用户使用。如有问题,可参考清华源官网获取更多帮助。
2025-05-17 10:51:56
3768
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人