科研党必看!10 分钟学会 Aspera,测序数据下载速度提升 100 倍
你是否经历过这样的崩溃时刻:
为了分析 PRJNA1063518 项目的 20 个测序样本,用 SRA Toolkit 下载,300M 的网络下,单个样本(20G)要下 4 小时,批量下载还经常断连,重下又要从头开始?
如果告诉你,有一款工具能把下载时间压缩到 20 分钟,还支持断点续传,你会不会立刻想学会?
它就是Aspera—— 科研领域 “大文件传输的天花板”,今天从 “原理→安装→实战” 全拆解,新手也能直接上手。
一、先搞懂:Aspera 到底是什么?为什么这么快?
很多人只知道 Aspera “快”,但不知道它快在本质。先花 2 分钟搞懂核心,后续用起来更顺手。
1. Aspera 的定位:专为 “大文件 / 远距离” 而生
Aspera 是 IBM 旗下的高速数据传输工具,核心应用场景就是超大规模文件传输—— 比如几十 G 的测序数据、几百 G 的影像文件,或是跨国家实验室的协作数据交换。
它不像 SRA Toolkit 那样 “绑定 NCBI”,而是通用的传输工具,在 ENA(欧洲核苷酸档案)、EBI(欧洲生物信息研究所)等科研数据库中,都被官方推荐用于下载原始数据。
2. 快的关键:FASP 技术,颠覆传统 TCP 传输
传统下载工具(比如 SRA Toolkit、FTP、HTTP)都基于TCP 协议,这个协议有个致命缺点:
- • 一旦网络出现轻微丢包(哪怕 1%),就会大幅降低传输速度(怕传错数据,不敢 “全速跑”);
- • 远距离传输时,TCP 的 “拥塞控制” 会更保守,速度直接腰斩。
而 Aspera 用的是FASP 协议(基于 UDP) ,相当于给数据传输装了 “涡轮增压”:
- • 丢包不怕:只重传丢包的部分,不影响整体速度;
- • 带宽榨干:动态检测网络最大带宽,比如 300M 的网,能跑到 280M(TCP 最多跑 150M);
- • 安全不减速:用 AES-256 加密数据,却不影响传输速度(TCP 加密会慢 30%+)。
这就是为什么同样下 20G 的测序数据,SRA Toolkit 要 4 小时,Aspera 只要 20 分钟 ——不是网络变快了,是传输协议换了 “赛道” 。
二、对比 SRA Toolkit:什么时候该用 Aspera?
很多人会问:“SRA Toolkit 是 NCBI 官方的,我为什么要换 Aspera?”
答案很简单:看你的需求场景。先看一张对比表,再给选择建议:
对比维度 | Aspera | SRA Toolkit |
---|---|---|
核心优势 | 速度快(10-100 倍)、支持批量下载 | 官方工具、可直接转 SRA 为 Fastq |
适用数据量 | 单样本 > 5G、批量样本(>10 个) | 单样本 < 5G、需转格式的场景 |
依赖网络 | 对丢包不敏感(适合远距离 / 差网络) | 依赖稳定网络(丢包易断连) |
输出格式 | 直接下载 Fastq(无需转格式) | 先下 SRA 格式,再转 Fastq |
安装复杂度 | 稍高(需配环境变量) | 低(conda 一键装) |
选择建议:
- 1. 如果你只下 1-2 个小样本(<5G),且需要把 SRA 转成 Fastq—— 用 SRA Toolkit(方便);
- 2. 如果你下批量样本(>10 个)或大样本(>5G),不管要不要转格式 ——必用 Aspera(省时间,直接下 Fastq,不用转格式);
- 3. 如果你在偏远地区 / 网络不稳定 —— 用 Aspera(断连后能断点续传,SRA Toolkit 要从头下)。
三、安装 Aspera:2 种方案,新手推荐 Conda(避坑版)
Aspera 的安装有两种主流方式:Conda 安装(推荐,新手友好) 和直接下载安装包(备选,无 Conda 时用) 。
先讲推荐的 Conda 方案,每一步都有命令和注释,复制粘贴就能跑。
方案 1:Conda 安装(推荐,避免环境冲突)
Conda 的优势是 “隔离环境”,不会和你电脑里的其他软件冲突,新手必选。
步骤 1:检查 Conda 是否安装
先打开 Linux 终端,输入以下命令,看是否有 Conda 版本输出(比如 conda 23.10.0):
conda --version
- • 如果提示 “command not found”:先装 Miniconda(轻量版,适合科研),命令如下(复制粘贴,一路按回车):
# 下载Miniconda(Linux 64位,其他系统可换链接)
wget https://repo.anaconda.com/miniconda/Miniconda3-py38_23.10.0-1-Linux-x86_64.sh
# 安装Miniconda(一路按回车,最后输入yes确认)
bash Miniconda3-py38_23.10.0-1-Linux-x86_64.sh
# 激活Conda(关闭终端重开,或执行以下命令)
source ~/.bashrc
步骤 2:创建 Aspera 专属环境(关键!避冲突)
不要用 base 环境装!创建一个专门的环境,后续出问题不影响其他软件:
# 创建名为aspera的环境,用Python 3.8(兼容性最好)
conda create -n aspera python=3.8 -y
# 激活aspera环境(后续操作都在这个环境里)
conda activate aspera
- • 激活后,终端前面会出现
(aspera)
,表示在专属环境里了。
步骤 3:Conda 安装 Aspera(一键搞定)
Aspera 在 bioconda 频道里,直接用 conda 装,不用手动找安装包:
# 从bioconda频道安装aspera-connect(版本会自动选最新稳定版)
conda install hcc::aspera-cli -y
步骤 4:验证安装 + 配置环境变量(新手最容易漏的一步)
安装后,先检查是否能调用ascp
(Aspera 的核心命令):
ascp --version
- • 如果提示 “ascp: command not found”:说明环境变量没配,按以下步骤配(复制粘贴):
# 1. 找到Aspera的安装路径(Conda环境里的路径)
# 执行后会输出路径,比如\~/miniconda3/envs/aspera/bin
find ~ -name "ascp" | grep "envs/aspera" | xargs dirname
# 2. 把路径写入环境变量(替换下面的\[你的路径]为上一步输出的路径)
echo 'export PATH=[你的路径]:$PATH' >> ~/.bashrc
# 3. 激活环境变量(不用重启终端)
source ~/.bashrc
# 4. 再次验证(如果输出版本号,比如ascp version 4.2.6,就成功了)
ascp --version
方案 2:直接下载安装包(备选,无 Conda 时用)
如果你的电脑没装 Conda,或不想用 Conda,用这个方案(步骤稍多,但也不难)。
步骤 1:下载对应系统的安装包
先看你的 Linux 是 32 位还是 64 位(几乎都是 64 位):
uname -m # 输出x86_64就是64位
然后下载 64 位安装包(用 wget 直接下,或去官网下):
# 下载最新版(如果链接失效,去官网https://www.ibm.com/products/aspera-connect找)
wget https://download.asperasoft.com/download/sw/connect/4.2.6/aspera-connect-4.2.6.113-linux-64.tar.gz
步骤 2:解压 + 安装
# 解压安装包(会生成aspera-connect-4.2.6.113-linux-64.sh)
tar -zxvf aspera-connect-4.2.6.113-linux-64.tar.gz
# 执行安装脚本(一路按回车,最后输入yes)
bash aspera-connect-4.2.6.113-linux-64.sh
- • 安装成功会提示:
Installing Aspera Connect 4.2.6... done.
,默认装在~/.aspera/connect/
。
步骤 3:配置环境变量 + 验证
和 Conda 方案的步骤 4 一样,配环境变量:
# 写入环境变量(默认安装路径)
echo 'export PATH=~/.aspera/connect/bin:$PATH' >> ~/.bashrc
# 激活环境变量
source ~/.bashrc
# 验证(输出版本号就成功)
ascp --version
四、实战:用 Aspera 下载 PRJNA1063518 原始数据(从 0 到 1)
学会安装后,最核心的是 “怎么找到下载链接” 和 “怎么用命令下载”。以 PRJNA1063518(NCBI 的 SRA 项目,包含多个肠道微生物测序样本)为例,一步一步教。
前置知识:Aspera 下载的 “链接规则”
Aspera 下载需要知道 “两个东西”:
- 1. 服务器地址:ENA 的 Aspera 服务器是
era-fasp@fasp.sra.ebi.ac.uk
(固定的,不用改); - 2. 文件路径:ENA 的原始数据路径规则是
/vol1/fastq/[SRR前6位]/00[SRR最后1位]/[完整SRR号]/
。比如 SRR 号是 SRR28123456:
- • SRR 前 6 位:SRR281;
- • SRR 最后 1 位:6;
- • 完整路径:
/vol1/fastq/SRR281/006/SRR28123456/
。
所以,整个下载地址就是:era-fasp@fasp.sra.ebi.ac.uk:/vol1/fastq/SRR281/006/SRR28123456/
。
步骤 1:获取 PRJNA1063518 的所有 SRR 号
首先要知道这个项目下有哪些样本(即 SRR 号),有两种方式:网页版(新手友好) 和命令行版(批量高效) 。
方式 1:网页版(ENA 网站,可视化操作)
- 1. 打开 ENA 官网:https://www.ebi.ac.uk/ena/browser/home;
- 2. 在搜索框输入
PRJNA1063518
,点击搜索;
- 3. 点击展开 “Show Column Selection”;
- 4. 只勾选所有 "fastq_aspera" 选项,并点击上方的 “TSV”,会下载一个文件,里面有所有样本的下载地址。
5.打开下载的文件,全选粘贴到Excel表格里面,删除第一列,然后点击‘A’——>‘数据’——>'分列',然后点击‘下一步’——>'勾选分号'——>'完成',这样你就得到了两列,然后将'B'列的内容粘贴到'A'列下面,最后按照‘升序’排序。最终,全选并复制文档(除去第一列表头),然后粘贴到‘sra_runs.txt’文本文件中。每一行代表一个单端序列链接。
方式 2:命令行版(用 edirect 工具,批量获取)
如果样本多(>20 个),用命令行更高效:
# 1. 先安装edirect(NCBI的工具,用于查询SRA数据)
conda install -c bioconda edirect -y
# 2. 查询PRJNA1063518的所有SRR号,保存到sra_runs.txt
esearch -db sra -query PRJNA1063518 | efetch -format runinfo | cut -d ',' -f 1 | grep -v Run > sra_runs.txt
# 3. 查看文件(会看到所有SRR号,每行一个)
cat sra_runs.txt
步骤 2:单个样本下载(先练手)
以 SRR28123456 为例,先试单个下载,熟悉命令。
核心命令(复制粘贴,改 SRR 号即可)
# 先创建一个存放数据的文件夹(避免混乱)
mkdir -p ~/PRJNA1063518_rawdata
cd ~/PRJNA1063518\_rawdata # 进入文件夹
# 下载命令(关键!改SRR号为你的样本号)
ascp -QT -l 300m -P 33001 -i ~/.aspera/connect/etc/asperaweb_id_dsa.openssh era-fasp@fasp.sra.ebi.ac.uk:/vol1/fastq/SRR281/006/SRR28123456/ ./
命令参数解释(新手必看,知道为什么这么写)
参数 | 作用 | 新手建议 |
---|---|---|
-k 2 | 断点续传 | 建议加上,如果下载中断,再次运行能接着下载 |
-QT | 禁用进度条 + 禁用加密(加速下载) | 必加,能快 10%-20% |
-l 200m | 限制带宽为 200Mbps(避免占满网络) | 按你的网络改,比如 500M 网写 500m |
-P 33001 | 用 Aspera 的默认端口(避免被防火墙拦截) | 固定 33001,不用改 |
-i [私钥路径] | 指定 Aspera 的私钥(验证身份用) | 路径固定:~/.aspera/connect/etc/asperaweb_id_dsa.openssh |
era-fasp@... | ENA 的服务器地址 + 文件路径 | 改 SRR 号对应的路径即可 |
./ | 下载到当前文件夹(即 PRJNA1063518_rawdata) | 不用改,或指定其他路径(比如~/data/) |
下载成功的标志
终端会输出类似这样的信息:
SRR28123456_1.fastq.gz 100% 20.5GB 300Mbps 00:00:00
表示 20.5GB 的文件,用 300Mbps 的速度下完了,耗时 0(实际是 11 分钟左右)。
步骤 3:批量下载所有样本(高效版)
如果有 10 个以上样本,手动改命令太麻烦,写个循环脚本批量下载。
脚本 1:用网页版下载的 aspera_download.txt
如果从 ENA 网页下载了sra_runs.txt
,里面有所有下载地址,直接循环读取:
# 进入数据文件夹
cd ~/PRJNA1063518_rawdata
# 批量下载脚本(逐行读取下载地址)
while read line; do
# line就是每个样本的下载地址(比如era-fasp@...)
ascp -k 2 -QT -l 200m -P 33001 -i ~/.aspera/connect/etc/asperaweb_id_dsa.openssh $line ./
done < ~/Downloads/sra_runs.txt # 替换为你的sra_runs.txt路径
脚本 2:用命令行生成的 sra_runs.txt
如果只有 SRR 号列表(sra_runs.txt),用脚本自动拼路径:
# 进入数据文件夹
cd ~/PRJNA1063518_rawdata
# 批量下载脚本(自动拼路径)
while read srr; do
# 提取SRR前6位(比如SRR28123456→SRR281)
srr_prefix=${srr:0:6}
# 提取SRR最后1位(比如SRR28123456→6)
srr_suffix=${srr: -1}
# 拼完整路径,执行下载
ascp -k 2 -QT -l 300m -P 33001 -i ~/.aspera/connect/etc/asperaweb_id_dsa.openssh era-fasp@fasp.sra.ebi.ac.uk:/vol1/fastq/$srr_prefix/00$srr_suffix/$srr/ ./
done < ~/sra_runs.txt # 替换为你的sra_runs.txt路径
批量下载的小技巧
- • 后台运行:如果样本多,想让它后台下载(关闭终端也能继续),在命令前加
nohup
和&
:
nohup bash 你的脚本.sh > download.log 2>&1 &
- • 查看进度:用
tail -f download.log
查看下载日志,或用du -sh ~/PRJNA1063518_rawdata
看文件夹大小变化。
五、新手必看:3 个常见问题 + 避坑指南
用 Aspera 时,新手最容易遇到 3 个问题,提前避坑!
问题 1:提示 “Permission denied (publickey)”(权限错误)
- • 原因:私钥路径错了,Aspera 找不到验证身份的私钥。
- • 解决:确认私钥路径是
~/.aspera/connect/etc/asperaweb_id_dsa.openssh
,用以下命令找私钥:
find ~ -name "asperaweb_id_dsa.openssh" # 找到后替换到命令里的-i参数后
问题 2:提示 “Connection refused”(连接失败)
- • 原因:端口 33001 被防火墙拦截,或 ENA 服务器暂时不可用。
- • 解决:
- 1. 先测端口是否通:
telnet ``fasp.sra.ebi.ac.uk`` 33001
(能通会提示 Connected); - 2. 若不通,换端口(试试 33002):把命令里的
-P 33001
改成-P 33002
; - 3. 若还不通,等 10 分钟再试(ENA 服务器偶尔维护)。
问题 3:下载速度慢(只有 10-20Mbps)
- • 原因:带宽限制设低了,或没加
-QT
参数。 - • 解决:
- 1. 把
-l 200m
改成更高的数值(比如你的网是 1G,改-l 1g
); - 2. 确保命令里加了
-QT
参数(禁用加密和进度条,能提速); - 3. 避开高峰期(欧洲白天是 ENA 服务器的高峰期,中国晚上下载更快)。
六、总结:Aspera 的核心价值,不止是 “快”
看到这里,你可能会说:“我学会用 Aspera 下载数据了,但它还有其他用吗?”
当然有!Aspera 的核心价值是 “解决大文件传输的效率痛点”,除了下载测序数据,还能:
- 1. 传数据到实验室服务器:比如把本地分析好的 100G 结果传给导师的服务器,用 Aspera 只要 10 分钟;
- 2. 跨平台协作:和国外实验室共享数据,不用等几天,几小时就能传完;
- 3. 下载其他大文件:比如 TCGA 的影像数据、千人基因组计划的原始数据,都能用 Aspera 加速。
最后,送新手一句话:科研中 “工具选择” 比 “埋头干活” 更重要—— 用对 Aspera,省下的时间能多跑一次实验、多改一篇论文。
如果在使用中遇到问题,欢迎在评论区留言,我会一一回复!
欢迎扫码关注我的微信公众号‘GutMicroLab’,阅读更及时的科研分享和宏基因组分析教程。