基于Transformer的入侵检测方法研究

本文提出一种基于Transformer的入侵检测方法,针对网络数据的复杂性和不平衡问题,结合SMOTE-GMM算法处理数据不平衡,利用Transformer的注意力机制提取特征,提高检测性能。在NSL-KDD数据集上,该方法的分类准确率、精确率和F1值显著优于DNN、AIDS等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

随着计算机技术的不断发展,网络中的数据呈现出复杂、庞大、冗余且多维的特性。为提高基于深度学习的入侵检测系统的检测性能,提出基于Transformer的入侵检测方法。首先,对数据进行预处理使之符合神经网络的输入要求,并利用SMOTE-GMM算法解决数据不平衡问题;其次,利用Transformer编码器对输入特征进行提取,通过Transformer解码器建立编码器输出和解码器输入的注意力联系;最后,通过Softmax完成分类。为评估模型检测性能,在NSL-KDD数据集上进行实验验证,实验结果表明,基于Transformer的入侵检测方法与DNN、AIDS、FEEM等方法相比性能提升显著,分类准确率达88.2%、精确率达89.7%。

0 引言

随着互联网的快速发展,网络安全问题日益凸显,网络数据遭受各种攻击。如何保护信息完整性,降低网络攻击对国家、企业和个人造成的损失,成为当下亟待解决的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值