在工业设备、航空航天、能源系统等领域,弱监督学习(Weakly Supervised Learning)为故障诊断提供了一种高效解决方案,尤其在标注数据稀缺或标签质量有限的场景下。
一、弱监督学习在故障诊断中的挑战
1. 数据特点
- 标签稀疏性:故障样本少且标注成本高(需专家经验)。
- 标签噪声:传感器数据误报或标注错误(如误标故障类型)。
- 时序依赖性:故障特征常隐藏在动态时序数据中(如振动信号、温度序列)。
2. 核心难点
- 如何利用少量标注数据:在标签不足时保持模型泛化能力。
- 处理不确定性与模糊性:区分正常波动与早期故障征兆。
- 跨设备/场景迁移:不同设备间的数据分布差异(Domain Shift)。
二、弱监督学习方法分类
1. 不完全监督(Incomplete Supervision)
- 方法:仅有部分样本被标注(如只有故障样本有标签)。
- 适用技术:
- 半监督学习:结合标注与未标注数据。
- 自训练(Self-Training):用初始模型预测未标注数据,高置信度样本加入训练集(需防噪声累积)。
- 一致性正则化:如Mean Teacher,强制模型对数据增强样本输出一致。
- 主动学习(Active Learning):迭代选择信息量最大的样本供专家标注。
- 不确定性采样:选择模型预测熵最高的样本。
- 半监督学习:结合标注与未标注数据。
2. 不确切监督(Inexact Supervision)
- 方法:标签粒度粗糙(如仅知道某时间段存在故障,但具体时刻未知)。
- 适用技术:
- 多示例学习(MIL, Multiple Instance Learning):
- 将时序数据分段为“包”(Bag),包级别标注(如“至少一段存在故障”)。
- 模型需定位故障发生时刻(如基于注意力机制的MIL)。
- 弱标签时间序列建模:使用时间卷积网络(TCN)或Transformer捕捉局部特征。
- 多示例学习(MIL, Multiple Instance Learning):
3. 不准确监督(Inaccurate Supervision)
- 方法:标签存在噪声(如误标正常为故障)。
- 适用技术:
- 噪声鲁棒损失函数:如Generalized Cross Entropy(GCE)、对称交叉熵(Symmetric CE)。
- 数据清洗:通过聚类或异常检测剔除可疑标注样本。
三、技术实现框架
1. 数据预处理
- 时序对齐与降噪:
- 使用小波变换或卡尔曼滤波去除传感器噪声。
- 对齐多源异构数据(如振动、电流、温度信号)。
- 特征工程:
- 提取时域特征(均值、方差)、频域特征(FFT能量)、时频特征(小波包能量熵)。
2. 模型设计
- 弱监督时序模型:
- 基于MIL的LSTM/Transformer:将时序分段为包,用注意力机制定位故障片段。
- 对比学习:构建正负样本对,学习故障特征的区分性表示。
- 生成对抗网络(GAN):
- 生成合成故障数据,缓解样本不均衡问题(如DCGAN、WGAN)。
3. 训练策略
- 两阶段训练:
- 预训练:利用无标签数据通过自监督学习(如预测掩码传感器值)初始化模型。
- 微调:用少量标注数据调整模型参数。
- 课程学习(Curriculum Learning):
- 从简单样本(明显故障)到困难样本(早期故障)逐步训练。
4. 评估与验证
- 评价指标:
- 精确率-召回率曲线(PR曲线,适用于类别不均衡)。
- F1分数、AUC-ROC(综合评估分类性能)。
- 对抗测试:
- 注入人工噪声或扰动,测试模型鲁棒性。
四、典型应用案例
案例:风力发电机轴承故障诊断
- 数据:
- 10台风机振动信号(采样率20kHz),仅5%的故障片段被标注。
- 方法:
- 数据分帧:将连续信号分割为1秒长度的包(每个包20000点)。
- MIL-Transformer模型:
- 输入:每个包通过1D-CNN提取局部特征。
- Transformer编码器捕捉长程依赖,注意力权重定位故障片段。
- 半监督训练:使用MixMatch同时对标注和未标注数据施加一致性正则化。
- 结果:
- 在未标注数据上F1分数达到92%,较纯监督学习(需全标注)提升15%。
五、未来方向
- 域自适应弱监督:解决不同设备或工况下的数据分布漂移。
- 因果推断:结合故障机理建模,提升模型可解释性。
- 边缘计算部署:轻量级模型(如知识蒸馏)适配嵌入式设备实时诊断。
六、工具与资源推荐
- 数据集:
- NASA轴承数据集、CWRU电机故障数据集、PHM Society竞赛数据。
- 开源库:
- PyTorch Lightning(快速实现弱监督训练流程)、TSFresh(时序特征提取)。
- 论文:
- 《Weakly Supervised Learning for Industrial Fault Diagnosis》(IEEE TIM, 2022)。