
概念定义
文章平均质量分 86
豆芽819
大学生一枚,记录学习生活
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Vision Transformer(ViT)
Vision Transformer(ViT)是一种将Transformer模型应用于计算机视觉任务的创新方法,由Google Research团队在2020年提出。它打破了传统卷积神经网络(CNN)在图像处理中的主导地位,通过全局注意力机制直接建模图像块(patches)之间的关系,尤其在大规模数据集上表现出色。原创 2025-05-11 00:06:03 · 1517 阅读 · 0 评论 -
伪代码(Pseudocode)
伪代码是算法设计的通用蓝图,通过去语法化和逻辑抽象,帮助开发者专注于问题本质。掌握伪代码的编写能力,能显著提升算法设计、协作沟通和技术文档的清晰度。原创 2025-05-03 23:55:02 · 2178 阅读 · 0 评论 -
生成对抗网络(GAN, Generative Adversarial Network)
从Deepfake到AI艺术创作,GAN正在重塑内容生成的边界。尽管存在训练挑战,但其潜力在医疗、娱乐、工业等领域的应用前景广阔。原创 2025-05-03 23:34:32 · 1484 阅读 · 0 评论 -
蒙特卡罗方法(Monte Carlo Method):基于随机采样的数值计算与模拟技术
蒙特卡罗方法通过随机采样和统计模拟解决数学、物理、工程等领域的复杂问题,其核心是利用大数定律——当样本量足够大时,样本均值会收敛于期望值。原创 2025-05-02 23:12:27 · 1047 阅读 · 0 评论 -
策略梯度算法(Policy Gradient Methods):直接优化策略的强化学习范式
策略梯度算法通过直接优化策略函数(Policy Function)来最大化累积奖励,而非间接优化值函数(如Q-learning)。其核心是梯度上升:计算预期回报对策略参数的梯度,并沿梯度方向更新策略。原创 2025-05-02 22:45:48 · 963 阅读 · 0 评论 -
序列数据(Sequential Data):按顺序排列的动态信息载体
序列数据是现实世界中动态系统的核心表达形式,其顺序性和依赖性对模型设计提出了独特挑战。从传统的ARIMA到现代的Transformer,序列建模技术持续演进,赋能金融、医疗、语言等领域的智能决策。理解序列数据的本质,是解锁时序预测、自然语言理解等任务的关键。原创 2025-05-02 22:00:55 · 816 阅读 · 0 评论 -
Bootstrap(自助法):无需假设分布的统计推断工具
Bootstrap 是一种重采样(Resampling)技术,通过在原始数据中有放回地重复抽样,生成大量新样本集,用于估计统计量(如均值、方差)的分布或模型性能的不确定性。原创 2025-05-02 21:56:14 · 1159 阅读 · 0 评论 -
遗传算法(Genetic Algorithm,GA)
遗传算法(Genetic Algorithm,GA)是一种受生物进化理论启发的优化算法,通过模拟自然选择和遗传机制来搜索复杂问题的最优解。原创 2025-04-30 22:42:29 · 645 阅读 · 0 评论 -
感受野(Receptive Field)
感受野(Receptive Field)是卷积神经网络(CNN)中一个神经元在输入图像上能“看到”的区域范围。简单来说,它表示某个特征图中的像素点,对应原始输入图像中的多大区域。原创 2025-04-29 22:24:03 · 511 阅读 · 0 评论 -
上采样(Upsampling)
上采样(Upsampling)是深度学习中的一种操作,用于将低分辨率的特征图(或数据)恢复到更高的分辨率,目的是恢复细节信息或匹配目标尺寸。它的核心是“逆向放大”,但并非简单的像素复制,而是通过算法生成新数据。原创 2025-04-29 10:58:30 · 724 阅读 · 0 评论 -
MMCV简介
MMCV:专为深度学习设计,聚焦数据预处理、训练流程管理,和PyTorch无缝衔接。原创 2025-04-29 10:20:55 · 443 阅读 · 0 评论 -
面向弱监督学习(Weakly Supervised Learning)场景的故障诊断
在工业设备、航空航天、能源系统等领域,弱监督学习(Weakly Supervised Learning)为故障诊断提供了一种高效解决方案,尤其在标注数据稀缺或标签质量有限的场景下。原创 2025-04-23 16:02:01 · 1012 阅读 · 0 评论 -
监督学习(Supervised Learning)与无监督学习(Unsupervised Learning)
监督学习与无监督学习是机器学习的两大核心范式原创 2025-04-23 15:45:17 · 842 阅读 · 0 评论 -
扩散模型(Diffusion Models)
扩散模型(Diffusion Models)是近年来在生成式人工智能领域崛起的一种重要方法,尤其在图像、音频和视频生成任务中表现突出。其核心思想是通过逐步添加和去除噪声的过程来学习数据分布,从而生成高质量样本。原创 2025-04-22 23:02:25 · 1130 阅读 · 0 评论 -
序列决策问题(Sequential Decision-Making Problem)
序列决策问题是强化学习的核心,其复杂性源于动态性、延迟奖励和高维状态空间。通过结合深度学习(如DQN、策略梯度)和经典RL理论(如贝尔曼方程),深度强化学习(Deep RL)在复杂任务中取得了突破性进展。原创 2025-04-22 20:46:25 · 2038 阅读 · 0 评论 -
强化学习(Reinforcement Learning, RL)与深度强化学习(Deep Reinforcement Learning, DRL)
本文是关于强化学习(Reinforcement Learning, RL)与深度强化学习(Deep Reinforcement Learning, DRL)的对比分析,涵盖定义、核心区别、算法分类、应用场景及研究挑战原创 2025-04-21 22:26:23 · 1175 阅读 · 0 评论 -
平均池化(Average Pooling)
平均池化是一种下采样操作,通过对输入区域的数值取平均值来压缩数据空间维度。原创 2025-04-19 23:19:35 · 1779 阅读 · 0 评论 -
下采样(Downsampling)
下采样(Downsampling)指通过特定方法降低数据的空间分辨率或时间分辨率,减少数据量同时保留关键信息。原创 2025-04-19 22:57:42 · 1115 阅读 · 0 评论 -
内积(Inner Product)
内积(Inner Product)是线性代数中的核心概念,广泛应用于数学、物理和机器学习中。在 PyTorch 等深度学习框架中,内积是张量运算的基础操作之一。原创 2025-04-19 21:31:44 · 878 阅读 · 0 评论