从 ChatGPT、Sora 到最近爆火的 AI 编程助手 Cursor,AI 正以前所未有的速度渗透进我们的生活和工作。伴随而来的,是一堆令人眼花缭乱的高频词汇:大模型(Large Model)、LLM(Large Language Model)、机器学习(Machine Learning)、深度学习(Deep Learning,虽然你没问,但它太重要了,我们也会提一下),还有最新的智能体(Agent)…… 这些词到底是什么意思?它们之间有啥关系?是不是大模型就是 AI 的全部?LLM 又是大模型的子集吗?Agent 是不是更高级的 AI?
别急,本文就是来给你一次性讲清楚这些概念的关系 —— 不说废话、不绕术语,直奔主题,让你看完后能真正搞明白:它们各自是啥,又是怎么串起来的。
1、人工智能(AI)—— 最大、最宏伟的梦想
什么是“智能”?简单说,就是像人一样思考、学习、理解、推理、决策、创造。
人工智能(Artificial Intelligence, AI),目标就是让机器拥有这些“人类智能”。
所以,AI不是某个技术、工具、或应用,而是一个终极目标。早在上世纪50年代,科学家们就开始梦想如何通过计算机来模拟人类智能。早期他们靠写规则,比如:
“猫有四条腿、有尾巴、会喵喵叫”。
但你知道的,猫可不是只有一种样子,总有没尾巴的、瘸腿的、沉默寡言的……所以写规则模拟智能,很快就遇到了瓶颈。
于是,科学家开始另辟蹊径:别写规则了,能不能让机器自己从数据里学?
这,就到了我们的第二站。
2、机器学习(ML)——教会机器自己学习
机器学习(Machine Learning, ML)是实现AI的关键方法之一。
和传统编程“写规则”不同,机器学习的逻辑是:
提供数据 + 正确答案 → 让机器自动学出规律。
比如要教电脑识别猫,不再写规则,而是喂它一堆“猫”的照片,再告诉它“这是猫”,它就能学会怎么分辨猫了。
根据有没有“答案”,机器学习还可以分为:
-
监督学习:有标签,比如图像+“这是猫”的说明。
-
无监督学习:没标签,比如让系统自己从一堆新闻中找出主题。
-
强化学习:像训练狗一样,用“奖励”引导它做出正确行为。
可以说,机器学习是实现AI目标的重要“路径”,是我们AI金字塔里承上启下的技术基石。
3、深度学习(DL)——让机器学得更深更聪明
机器学习很强,但深度学习(Deep Learning, DL)才是真正让AI起飞的“发动机”。
深度学习用的是神经网络模型,灵感来源于人脑神经元。
一个典型的神经网络由很多层组成:
-
前面几层识别基本特征(边缘、颜色等)
-
中间层识别复杂特征(眼睛、鼻子)
-
后面几层理解整体结构(整张脸)
最大的突破是:深度学习不需要你告诉它怎么提取特征,它自己会学!
这意味着我们可以用原始数据直接训练,比如喂一堆图,它就能学出“猫”的模样,而不需要我们手动设计特征。
自从2010年后,深度学习凭借数据+算力爆发,在语音识别、图像识别、自然语言处理等领域大杀四方,也为大模型的诞生打下了基础。
4、大模型(Large Models)——AI能力的大爆炸
进入深度学习时代后,科学家发现一件神奇的事:
模型越大、数据越多,智能能力会突然“跳跃”,涌现出之前没有的能力。
这就是所谓的“涌现能力(Emergent Ability)”。
于是,大家开始拼命“堆大”:更大的模型、更多的数据、更长时间的训练。
这就诞生了“大模型”:
-
参数多到动辄百亿、千亿;
-
数据涵盖全网文本、图像、代码;
-
能力变得更通用、更聪明。
一个大模型训练好之后,不再是只能做一个任务,而是“一个顶多个”:
- 能写代码、能画画、能写文章、还能做逻辑推理;
- 还能通过少量提示(Prompt)完成新任务(Few-shot 或 Zero-shot);
所以,大模型是深度学习的集大成者,是AI能力爆发的关键支点。
5、大型语言模型(LLM)——语言理解的王者
大模型中最出圈、最闪亮的一类,就是大型语言模型(Large Language Models, LLM)。
你熟悉的 ChatGPT、Gemini、Claude、文心一言……都属于LLM。
LLM的能力来自于:
-
在海量文本上训练(网页、书籍、社交对话、代码等);
-
使用Transformer架构(也就是“Attention is all you need”);
-
可以理解上下文、生成自然语言、总结概念、甚至编写程序。
LLM让人类第一次有了“会聊天的AI”——它不只是处理语言,而是用语言表达知识、逻辑、意图和创造力。
所以,LLM是目前大模型中应用最广、落地最多的品类。
6、Agent(智能体)——让AI自主完成任务
有了强大的LLM,为什么还需要Agent?
想象下:
你让AI“帮我整理日程、订票、写邮件”,它要怎么做?一个模型回答一句话显然不够。
这时候,Agent(智能体) 就出场了。
Agent是一种系统,它不仅能“回答”,还能感知环境、规划步骤、调用工具、执行任务、记住历史信息,一步步完成复杂流程。
一个典型的AI Agent有这几个核心组件:
-
感知:能读取用户输入、查网页、识别图片;
-
规划:能根据目标设计执行步骤;
-
行动:能使用工具、写文件、调用API;
-
记忆:能记住上下文、用户偏好和历史任务。
如果说LLM是大脑,那Agent就是给它装上了“手脚”和“目标系统”,让它能在真实世界中做事情,而不仅仅是“说话”。
Agent是AI应用的下一个爆发点,它让AI从“问答工具”进化为“数字助理”,从“对话模型”变成“任务执行者”。
一图总结:这六者的关系到底是啥?
我们用一句话来帮你串起来:
👉 AI是梦想,ML是路径,DL是引擎,大模型是成果,LLM是语言专家,Agent是落地执行者。
它们的关系是逐层演进、逐步构建:
理解了这个逻辑,你就不会再被AI黑话绕晕,而是能清晰分辨谁是谁、谁管什么、谁属于谁。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!