
机器学习
文章平均质量分 93
co0t
菜鸟一个
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习(4)Kmeans算法
在众多聚类算法中,K-means算法因其简单高效而备受青睐。原创 2024-12-08 12:20:22 · 1943 阅读 · 0 评论 -
机器学习(3)朴素贝叶斯算法
朴素贝叶斯是一个高效、易于实现的分类算法,尤其适用于特征独立性假设成立的场景。尽管它的特征独立性假设在很多情况下并不完全成立,但它仍然能够在许多实际问题中取得不错的效果。原创 2024-12-02 11:04:25 · 1566 阅读 · 0 评论 -
机器学习(2) 逻辑回归
我们的目标是根据邮件的特征(例如是否包含某些特定单词)来判断邮件是否为垃圾邮件。假设我们有一个小的数据集,包含几封邮件以及它们是否是垃圾邮件的标签(1表示垃圾邮件,0表示非垃圾邮件)。通过以上过程,我们用一个简单的例子说明了如何通过逻辑回归来解决垃圾邮件分类问题。数据准备:提取邮件特征(例如是否包含“Free”和“Money”)。模型训练:使用逻辑回归进行训练,找到最优的模型参数。预测:使用训练好的模型对新邮件进行分类。评估:使用测试集评估模型性能。TP(真正例):预测为垃圾邮件且实际为垃圾邮件。原创 2024-11-29 18:02:50 · 1397 阅读 · 0 评论 -
机器学习(1)线性回归
线性回归算法是机器学习深度学习入门的必学的算法,其算法原理虽然简单,但是却蕴含着机器学习中的一些重要的基本思想。许多功能更为强大的非线性模型可在线性模型的基础上通过引入层级结构或高维映射而得。同时机器学习深度学习的核心思想就是优化求解,不断寻找最合适的参数,特别是理解了怎么利用梯度下降法去求解参数,对后续的神经网络的学习有着很大的帮助。线性回归是一种基本且常用的回归算法,用于预测连续数值。原创 2024-11-11 15:17:34 · 1205 阅读 · 0 评论 -
机器学习总结
从本质上讲,可以认为机器学习就是在数据中寻找一种合适的函数来描述输入与输出之间的关系。我们通过训练模型,使它能够找到一个函数 f(x),使得对于给定的输入 x,函数 f的输出 y尽可能接近真实值或期望的结果。机器学习=寻找一种函数机器学习算法根据其学习方式和任务类型可分为多种类别,包括监督学习、无监督学习、半监督学习和强化学习。以下是一些常见机器学习算法的简介:1. 线性回归(Linear Regression)- 类型:监督学习- **任务**:回归。原创 2024-11-11 14:08:14 · 889 阅读 · 0 评论