- 博客(53)
- 收藏
- 关注
原创 计组2.5(湖科大)
计算机中的数据以二进制的形式存储在寄存器或存储器中。例如32位寄存器**(一共2³²个组合)**汇编语言中的数据类型取决于指令操作码。,对该数进行何种数据类型的操作完全取决于。同一个操作数,既可以当作有符号数,也可以当作无符号数。C语言中常见的整型数据类型:char(8位)、short(16位)、int(32位)、long(64位) 默认表示有符号整数(前面加上“unsigned”表示无符号数)。
2025-07-16 10:23:18
387
原创 计组 第二章
一个八进制位对应3个二进制位一个十六进制位对应4个二进制位整数 除基取余 低位先得小数 乘基取整 高位先得 十进制转换为二进制会出现无限循环小数(精度缺失问题)
2025-07-16 10:07:46
816
原创 计组 第一章
计算机系统性能的好坏取决于。主机外设(在硬件上运行)(1)系统软件 (操作系统、数据库管理系统、网络系统、语言处理程序、服务程序)(2)应用软件(科学计算 、数据处理 、过程控制、事务管理)
2025-07-15 15:56:20
935
原创 [自然语言处理]统计语言模型
对给定中文语料,将最后5%作为测试语料,其他为训练语料。当n取不同值时,对测试语料的每个句子的最后一个字c,当前面n-1个字(上限为所有历史)已知时,预测c,计算预测准确率,并分析实验结果。
2025-07-12 13:22:03
275
原创 [自然语言处理]单词拼写检查
本文介绍了三个自然语言处理任务的实现:1. 动态规划算法计算字符串编辑距离,通过构建状态数组记录转换所需最少操作次数;2. 基于SpellChecker库的英文拼写检查程序,可识别错误单词并提供纠正建议;3. 简单的拼音输入法原型,通过拼音-汉字映射生成可能的汉字组合。实验结果表明,编辑距离算法能有效量化字符串差异,拼写检查器对常见错误具有纠错能力,拼音输入法展示了中文处理的复杂性。这些技术在实际应用中需结合语境优化,特别是中文处理需要更完善的词库支持。
2025-07-04 22:31:27
1051
原创 [自然语言处理]汉语文本分词
实验对比了jieba分词、互信息(MI)和双字耦合度(CD)三种中文分词方法。通过计算准确率、召回率和F1值发现:jieba库因成熟的词典和算法表现最佳,互信息侧重字符共现概率,双字耦合度强调相邻字符紧密度,但两者召回率均较低,存在未识别词问题。结果表明,基于统计的方法需调整阈值以优化效果,而jieba在通用领域仍具优势。改进方向包括参数调优和结合多特征提升分词性能。
2025-07-03 22:29:20
436
原创 [自然语言处理]计算语言的熵
本研究通过计算中英文语料的熵值,对比分析了两种语言的信息复杂度。实验结果显示:英语字母熵约为4.16比特(接近理论值4.03),单词熵为9.96比特(接近10);汉字熵为9.50比特(理论值9.71),汉语词熵为10.77比特(理论值11.46)。研究发现汉语熵值普遍高于英语,表明汉语在词汇丰富度、语义灵活性方面更具复杂性。这种高熵特性使汉语处理面临更大挑战,需要更复杂的编码和处理技术。研究结果对理解语言信息结构及自然语言处理具有参考价值。
2025-07-03 22:24:42
468
原创 [深度学习]目标检测YOLO v3
摘要: 本实验基于YOLOv3算法在Baidu飞桨AIStudio平台上实现林业病虫害目标检测。通过Python编程,实验涉及锚框绘制、IoU计算、非极大值抑制等关键步骤,并构建了DarkNet53骨干网络。模型训练采用动量优化器,在昆虫数据集上验证了检测效果,最终通过预测框坐标和类别概率输出结果。实验表明,YOLOv3的多尺度特征融合策略有效提升了检测精度,实现了速度和准确率的平衡,为林业病虫害识别提供了可行方案。
2025-06-15 15:30:57
1093
原创 [深度学习]目标检测基础
本文介绍了基于Python的目标检测实验,主要包含边界框、锚框和多尺度目标检测的实现。实验使用PyTorch框架,在Baidu飞桨AIStudio环境下进行。第一部分实现了边界框的两种表示方法转换(角点与中心点)及可视化;第二部分重点研究锚框生成、交并比计算、边界框分配和非极大值抑制等关键算法;第三部分探讨了多尺度特征映射对目标检测效果的影响。实验结果表明,合理设置锚框参数和特征映射尺度对提高检测精度至关重要。文章还对边界框维度、锚框参数调整等问题进行了理论分析,为理解目标检测算法提供了实践基础。
2025-06-15 15:12:58
690
原创 [深度学习]卷积神经网络
本实验基于Python和PyTorch框架比较了LeNet、AlexNet、VGG和ResNet四种经典CNN模型在FashionMNIST数据集上的表现,并重点研究了超参数调整对模型性能的影响。实验结果表明:1)对于所有模型,SGD优化器普遍比Adam表现更好;2)学习率在0.05左右时模型性能最佳;3)增加训练轮数可以提高准确率但会延长训练时间;4)批量大小对模型性能影响相对较小。此外,通过简化AlexNet模型结构(减少卷积层和全连接层),在保证准确率基本不变的情况下将训练时间从29分钟缩短至17分钟
2025-06-13 16:33:32
1402
原创 [深度学习]全连接神经网络
本实验基于MNIST数据集,使用PyTorch框架构建批标准化全连接神经网络。实验内容包括:(1)解压MNIST数据集并分析代码结构;(2)调整超参数(批量大小、学习率、Epoch次数),发现适当增大学习率和批量大小可提升训练效率,但过大会降低精度;(3)修改网络结构(隐藏层数和神经元数量),结果表明增加隐藏层和神经元能提高准确率但延长训练时间。实验验证了超参数选择对模型性能的重要影响,为神经网络调参提供了实践参考。
2025-06-13 16:05:52
875
原创 [深度学习]搭建开发平台及Tensor基础
张量的创建、调整形状、加减乘除、取绝对值操作、比较、数理统计操作、与Numpy的互相转换、降维和增维、裁剪、索引,把Tensor 移到GPU上去。1. 要定义一个64位浮点型Tensor,其值是矩阵:[[1,2],[3,4],[5,6]],并输出结果。17.创建一个二阶张量,长度为8,元素为[0,1,2,3,4,5,6,7],将其改编成形状为2*4的张量。8.要定义一个16位整型Tensor,其值是矩阵:[[1,2],[3,4],[5,6]] ,并输出结果。7.创建一个张量f,从1开始到7结束,步长为2。
2025-06-08 12:51:33
904
原创 [嵌入式实验]实验五:freeRTOS
在STM32 CubeMX可以配置 freeRTOS 的一些重要的属性,包括是否支持抢占机制,freeRTOS 的 系统时钟速率,最大优先级数量,最小任务栈尺寸,最大任务名称长度等。本次实验通过freeRTOS进行对LED的控制,FreeRTOS提供了丰富的API和工具,使得嵌入式系统的开发更加高效和可靠,将程序分成更小的任务,使得每个任务能够有效执行。如图5、图6、图7所示,可以看到开发板在程序的运行下依次由蓝灯变成红灯,再变成绿灯。软件:STM32CubeMX软件、ARM的IDE:Keil C51。
2025-05-29 16:44:06
347
原创 [嵌入式实验]实验四:串口打印电压及温度
接着将其波特率设置为 115200,数据帧设置为 8 位数据位,无校验位,1 位停止位。打开串口调试助手,选择usb串行设备,设置波特率为115200,并点击“打开串口”操作,运行程序后可以看到在窗口中接收到电压和温度信息,如图4所示,可以看到打印的电压是1.23V,打印的温度是29.41,根据打印出的数据可以看到温度在实时发生变化。(1)在实验中发现,开发板的六号接口(&huart6)可以正常输出,一号(&huart1)不能输出结果,所以运行后,在串口调试助手中显示的是六号接口的数据,如图5所示。
2025-05-29 16:38:02
872
原创 [嵌入式实验]实验三:PWM实现LED呼吸灯
第二个循环从511递减到1,同样调用__HAL_TIM_SET_COMPARE函数来设置定时器的比较值,并使用HAL_Delay函数延迟,随着比较值的减小,输出信号的频率也会减小。一个周期内高水平的持续时间占总周期的比例称为占空比,通过修改占空比,可以改变输出的等效模拟电压。通过控制不同的PWM占空比,控制某个颜色的LED的亮度,以这样的方式就可以通过设置aRGB的值控制最后输出的LED灯效。如图3、图4、图5所示,在开发板上,控制LED灯颜色循环切换,从红灯变成绿灯,再变成蓝灯,切换过程带有呼吸效果。
2025-05-29 16:37:43
370
原创 [嵌入式实验]实验二:LED控制
程序中部分代码如下图(图4)所示,其中设置变量a=0,循环次数max=5,当运行while循环时,通过bsp_led_toggle()函数翻转指定的LED指示灯,即当LED灯亮时,该函数会让其熄灭;程序中部分代码如下图(图2)所示,首先,通过调用HAL_GPIO_WritePin()函数将每个LED灯设置为高电平(GPIO_PIN_SET),使它们点亮。同时,学习了HAL库中的相关函数,例如使用bsp_led_toggle()函数翻转指定的LED指示灯,通过nop_delay_ms()函数实现延时功能。
2025-05-29 16:15:36
565
原创 [嵌入式实验]实验一:点亮LED
程序中部分代码如下图(图1)所示,HAL库中提供一个操作GPIO电平的函数:HAL_GPIO_WritePin 函数,使得对应的引脚输出高电平或者低电平。(3)问题三:在编译后下载出现Error: Flash Download failed - "Cortex-M4"的错误,如下图(图8)所示。(1)问题一:在使用Keil μVision开发环境时遇到了设备未找到的问题,如下图(图4)所示。解决方法:修改设置,更改使用的调试器接口,如下图(图7)所示。如下图(图3)所示,运行程序后点亮LED灯。
2025-05-29 16:05:19
374
原创 [计算机视觉]chapter1
计算机视觉就是用计算机编程,并设计算法来理解在这些图像中有什么。计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉的有力应用有图像搜索、机器人导航、医学图像分析、照片管理等。
2024-10-12 23:30:31
1043
机器学习 KNN算法实现鸢尾花分类 (分类算法)
2025-01-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人