例
求满足 P(xj)=f(xj)P(x_j) = f(x_j)P(xj)=f(xj) (j=0,1,2j=0,1,2j=0,1,2) 及 P′(x1)=f′(x1)P'(x_1) = f'(x_1)P′(x1)=f′(x1) 的插值多项式及其余项表达式。
解:
由给定条件,可确定次数不超过3的插值多项式。此多项式通过点(x0,f(x0)),(x1,f(x1))(x_0,f(x_0)),(x_1,f(x_1))(x0,f(x0)),(x1,f(x1))及(x2,f(x2))(x_2,f(x_2))(x2,f(x2)),故形式为
P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)P(x) = f(x_0) + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1)+ A(x-x_0)(x-x_1)(x-x_2)P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2),
其中A为待定常数,可由条件P′(x1)=f′(x1)P'(x_1) = f'(x_1)P′(x1)=f′(x1)确定
A=f′(x1)−f[x0,x1]−(x1−x0)f[x0,x1,x2](x1−x0)(x1−x2)A=\frac{f'(x_1)-f[x_0,x_1]-(x_1-x_0)f[x_0,x_1,x_2]}{(x_1-x_0)(x_1-x_2)}A=(x1−x0)(x1−x2)f′(x1)−f[x0,x1]−(x1−x0)f[x0,x1,x2]
为求出余项R(x)=f(x)−P(x)R(x)=f(x)-P(x)R(x)=f(x)−P(x)的表达式,设
R(x)=f(x)−P(x)=K(x)(x−x0)2(x−x1)2(x−x2)R(x) = f(x)-P(x) = K(x)(x-x_0)^2(x-x_1)^2(x-x_2)R(x)=f(x)−P(x)=K(x)(x−x0)2(x−x1)2(x−x2)
其中K(x)K(x)K(x)为待定函数。
构造
φ(t)=f(t)−P(t)−K(x)(t−x0)2(t−x1)2(t−x2)\varphi(t) = f(t)-P(t)-K(x)(t-x_0)^2(t-x_1)^2(t-x_2)φ(t)=f(t)−P(t)−K(x)(t−x0)2(t−x1)2(t−x2)
显然φ(xj)=0(j=0,1,2)\varphi(x_j)=0(j=0,1,2)φ(xj)=0(j=0,1,2),且φ′(x1)=0,φ(x)=0\varphi'(x_1)=0,\varphi(x)=0φ′(x1)=0,φ(x)=0,故φ(t)\varphi(t)φ(t)在(a,b)(a,b)(a,b)内有五个零点(重根算两个)。
由Rolle 定理,φ(4)(t)\varphi^{(4)}(t)φ(4)(t)在(a,b)(a,b)(a,b)内至少有一个零点ξ\xiξ,故
φ(4)(ξ)=f(4)(ξ)−4!K(x)=0\varphi^{(4)}(\xi)=f^{(4)}(\xi)-4!K(x)=0φ(4)(ξ)=f(4)(ξ)−4!K(x)=0
于是K(x)=f(4)(ξ)/4!K(x)=f^{(4)}(\xi)/4!K(x)=f(4)(ξ)/4!,余项表达式为
R(x)=f(4)(ξ)(x−x0)(x−x1)2(x−x2)/4!R(x)=f^{(4)}(\xi)(x-x_0)(x-x_1)^2(x-x_2)/4!R(x)=f(4)(ξ)(x−x0)(x−x1)2(x−x2)/4!
其中ξ\xiξ位于x0,x1,x2x_0,x_1,x_2x0,x1,x2和xxx所界定的范围内.