求解插值多项式及其余项表达式

求满足 P(xj)=f(xj)P(x_j) = f(x_j)P(xj)=f(xj) (j=0,1,2j=0,1,2j=0,1,2) 及 P′(x1)=f′(x1)P'(x_1) = f'(x_1)P(x1)=f(x1) 的插值多项式及其余项表达式。

解:

由给定条件,可确定次数不超过3的插值多项式。此多项式通过点(x0,f(x0)),(x1,f(x1))(x_0,f(x_0)),(x_1,f(x_1))(x0,f(x0)),(x1,f(x1))(x2,f(x2))(x_2,f(x_2))(x2,f(x2)),故形式为
P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)P(x) = f(x_0) + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1)+ A(x-x_0)(x-x_1)(x-x_2)P(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+A(xx0)(xx1)(xx2),

其中A为待定常数,可由条件P′(x1)=f′(x1)P'(x_1) = f'(x_1)P(x1)=f(x1)确定

A=f′(x1)−f[x0,x1]−(x1−x0)f[x0,x1,x2](x1−x0)(x1−x2)A=\frac{f'(x_1)-f[x_0,x_1]-(x_1-x_0)f[x_0,x_1,x_2]}{(x_1-x_0)(x_1-x_2)}A=(x1x0)(x1x2)f(x1)f[x0,x1](x1x0)f[x0,x1,x2]

为求出余项R(x)=f(x)−P(x)R(x)=f(x)-P(x)R(x)=f(x)P(x)的表达式,设
R(x)=f(x)−P(x)=K(x)(x−x0)2(x−x1)2(x−x2)R(x) = f(x)-P(x) = K(x)(x-x_0)^2(x-x_1)^2(x-x_2)R(x)=f(x)P(x)=K(x)(xx0)2(xx1)2(xx2)

其中K(x)K(x)K(x)为待定函数。

构造
φ(t)=f(t)−P(t)−K(x)(t−x0)2(t−x1)2(t−x2)\varphi(t) = f(t)-P(t)-K(x)(t-x_0)^2(t-x_1)^2(t-x_2)φ(t)=f(t)P(t)K(x)(tx0)2(tx1)2(tx2)

显然φ(xj)=0(j=0,1,2)\varphi(x_j)=0(j=0,1,2)φ(xj)=0(j=0,1,2),且φ′(x1)=0,φ(x)=0\varphi'(x_1)=0,\varphi(x)=0φ(x1)=0,φ(x)=0,故φ(t)\varphi(t)φ(t)(a,b)(a,b)(a,b)内有五个零点(重根算两个)。

由Rolle 定理,φ(4)(t)\varphi^{(4)}(t)φ(4)(t)(a,b)(a,b)(a,b)内至少有一个零点ξ\xiξ,故
φ(4)(ξ)=f(4)(ξ)−4!K(x)=0\varphi^{(4)}(\xi)=f^{(4)}(\xi)-4!K(x)=0φ(4)(ξ)=f(4)(ξ)4!K(x)=0

于是K(x)=f(4)(ξ)/4!K(x)=f^{(4)}(\xi)/4!K(x)=f(4)(ξ)/4!,余项表达式为
R(x)=f(4)(ξ)(x−x0)(x−x1)2(x−x2)/4!R(x)=f^{(4)}(\xi)(x-x_0)(x-x_1)^2(x-x_2)/4!R(x)=f(4)(ξ)(xx0)(xx1)2(xx2)/4!
其中ξ\xiξ位于x0,x1,x2x_0,x_1,x_2x0,x1,x2xxx所界定的范围内.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值