- 博客(26)
- 收藏
- 关注
原创 蓝桥杯每日真题 - 第20天
图的表示:采用邻接矩阵和度数数组表示图。深度优先搜索(DFS):使用递归方法遍历路径并计算路径代价。路径代价计算:路径代价由路径上经过的所有节点的度数之和来确定。
2024-11-21 20:09:52
918
原创 11.20作业
/定义了一个二维数组score,用于存储10个学生4门课程的成绩,打印出每个学生的索引和他们的成绩总和。//求 主对角线元素的最大值 主对角线元素的积 主对角线元素的平方和。//用冒泡排序算法对数组进行排序,并在排序前后打印数组。//计算数组中每个元素的第 k 位数字之和。// 数组对角线元素求和。//找出5个数中的最小值。// 数组的行列转置。
2024-11-20 19:41:43
302
原创 蓝桥杯每日真题 - 第19天
本题核心在于将日期处理与动态规划相结合,解决了多条件限制下的最优选择问题。日期统一化:通过天数累计简化日期差值计算。动态规划核心:记录每一天的最大报销金额,并逐步更新。代码结构清晰:日期处理、排序和动态规划分模块实现,方便理解和维护。
2024-11-20 13:13:47
860
原创 蓝桥杯每日真题 - 第17天
本题通过递归枚举所有可能的操作路径,并选择字典序最大的结果数字。通过合理的操作分配和优先级选择,可以在操作次数受限的情况下达到优化效果。递归的设计逻辑清晰,代码实现具有较好的通用性和扩展性。
2024-11-18 22:15:45
1126
原创 蓝桥杯每日真题 - 第16天
本题的解法是基于模拟的方法,逐步验证每套卡牌是否能完成。在实现中,逐一扣减卡牌需求,并动态更新空白卡牌的使用情况,最终统计完成的套组数。这种方式清晰且直观,非常适合解决需要严格满足条件的资源分配问题。
2024-11-18 22:09:51
1033
原创 蓝桥杯每日真题 - 第15天
这段代码通过模拟时钟的运行,计算出在一天中的某个时刻,时针和分针的夹角是分针和秒针夹角的两倍。这个问题考察了对时间的理解和指针运动的计算,以及如何将这些计算转化为代码实现。
2024-11-16 23:59:24
4544
原创 蓝桥杯每日真题 - 第14天
本题利用动态规划实现了从小到大的逐步转移,计算出将 2022 拆分成 10 个互不相同的正整数的方案数。动态规划的优点是避免了重复计算,提高了效率。最终结果储存在中,即为所求解。
2024-11-15 16:13:40
981
2
原创 蓝桥杯每日真题 - 第13天
该算法适用于解决无向图中的割边问题,并且能高效计算分割后的连通分量权值差。Tarjan算法在一次深度优先搜索中找出割边,提高了效率,是处理连通分量问题的有效工具。代码逻辑较为复杂,尤其是在low和dfn数组的更新上,需要对图的割边和强连通分量有较好理解。
2024-11-14 09:44:53
1088
原创 蓝桥杯每日真题 - 第12天
时间复杂度:该算法的复杂度为,因为它使用三重循环来枚举所有三点组合。空间复杂度:使用了map来存储每个点到其他点的距离信息,相应的空间复杂度为。
2024-11-13 15:19:38
905
原创 蓝桥杯每日真题 - 第11天
理解操作目标:合并操作会减少数组长度,同时要确保合并后形成的数值与另一数组的对应位置匹配。目的是让两个数组在各个位置的元素值一致。算法设计:使用双指针分别遍历两个数组。当两个数组对应位置的元素相等时,直接跳过该位置,继续向后对比;当不等时,尝试将相邻的元素合并成一个新元素,以缩小差异。如果两个数组在当前位置无法通过合并匹配,就返回 -1 表示无法完成目标。边界处理:需要在合并时特别注意边界条件,例如数组长度不一致、合并超出边界等情况。性能优化:通过双指针逐步合并,减少不必要的操作次数,使得算法尽可能高效。
2024-11-12 23:15:42
1002
原创 蓝桥杯每日真题 - 第10天
通过统计 ID 频次并使用贪心策略选择未使用的 ID,可以高效解决重复 ID 的替换问题,使得每个 ID 在数组中唯一。
2024-11-11 21:28:18
567
原创 蓝桥杯每日真题 - 第8天
本代码通过逐位遍历和计数器的方式实现了"2023"子序列的统计。此算法无需存储完整的字符串,通过位置的动态更新提高了效率。
2024-11-09 21:53:33
753
原创 蓝桥杯每日真题 - 第7天
使用前缀和快速计算子数组和。使用multiset存储所有子数组和,以支持有序查找和删除操作。通过双重循环枚举区间和,并使用查找最接近的数值,从而找到两个不重叠子数组和之间的最小差值。
2024-11-08 18:27:31
2429
原创 蓝桥杯每日真题 - 第5天
三重循环遍历组合:为了找到所有可能的三宝石组合,我们需要使用三重循环,每次从宝石集合中选取三个不同的宝石进行组合。这种方法保证了穷尽所有组合情况,从而找到最大精美度的最优解。最小公倍数和最大公因数的计算:精美程度的计算公式涉及最小公倍数 (LCM) 的多次计算。通过使用最大公因数 (GCD) 来辅助求出最小公倍数,既能保证准确性,也有助于优化计算效率。掌握 LCM 和 GCD 的计算方法在本题中尤为重要。优先级选择规则的设计。
2024-11-06 09:00:12
1772
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人