【无标题】

> st <- c(75,64,45.6,66.9,56.7,66,78.9,66.7,99.6,69)
> mean(st)
[1] 68.84
> hist(st)
> y<-desity(sy)
Error in desity(sy) : 没有"desity"这个函数
> y<-desity(st)
Error in desity(st) : 没有"desity"这个函数
> y<-density(st)
> lines(y) # 不显示是因为是以频率显示,改为以概率显示
> hist(st,freq=F)
> lines(y)

> N=1000
> mean=100
> sd=4
> x=rnorm(N,mean,sd)
> hist(x)
> # 以上的代码绘出直方图
> 
> #hist(x,freq = NULL,probability = !freq,col=NULL,main=paste("Histogram of",xname),xlim=range(breaks),ylim=NULL,xlab=xname,ylab,axes=TRUE,nclass=NULL)
> # freq = NULL 纵坐标选频数
> 
> N <-rnorm(1000,mean=100,sd=4)
> hist(N)
> 
> # 核密度估计
> hist(N,col="blue",freq=False)
Error in hist.default(N, col = "blue", freq = False) : 找不到对象'False'
> hist(N,col="blue",freq=F)
> lines(density(x),col="green",lwd=3)
> # 在原有的直方图上加宽度为3的数据。线是利用核密度估计的数值。默认正态和函数

 

> N <- rbinom(1000,100,0.9) # 产生数据
> hist(N,col="lightgreen",freq=F)
> lines(density(N),col="yellow",lwd=3)

 

 

 

 st <- c(75,64,45.6,66.9,56.7,66,78.9,66.7,99.6,69)
> mean(st)
[1] 68.84
> hist(st)
> y<-desity(sy)
Error in desity(sy) : 没有"desity"这个函数
> y<-desity(st)
Error in desity(st) : 没有"desity"这个函数
> y<-density(st)
> lines(y) # 不显示是因为是以频率显示,改为以概率显示
> hist(st,freq=F)
> lines(y)
> x<-45:75
> z <- dnorm(x,mean(st),sd(st),col="lightblue")
Error in dnorm(x, mean(st), sd(st), col = "lightblue") : 
  参数没有用(col = "lightblue")
> z <- dnorm(x,mean(st),sd(st))
> z
 [1] 0.006856625 0.007699074 0.008602214 0.009563695 0.010579981 0.011646295
 [7] 0.012756583 0.013903515 0.015078516 0.016271825 0.017472603 0.018669070
[13] 0.019848672 0.020998289 0.022104468 0.023153674 0.024132565 0.025028264
[19] 0.025828649 0.026522615 0.027100337 0.027553497 0.027875488 0.028061567
[25] 0.028108979 0.028017018 0.027787050 0.027422477 0.026928652 0.026312751
[31] 0.025583596
> lines(x,z,col="green")
> # 绿z为正态分布,黑x为核密度
> 
> stem(st)

  The decimal point is 1 digit(s) to the right of the |

  4 | 67
  6 | 4677959
  8 | 
  10 | 0
> boxplot(st)

 

> PCA <- read.csv("C:/Users/Public/Desktop/EduRecivedFiles/PCA.student.csv",header=T)
> PCA
   M   P Chem  C  H  E
1 65  61   72 84 81 79
2 77  77   76 64 70 55
3 67  63   49 65 67 57
4 80  69   75 74 74 63
5 74  70   80 84 81 74
6 78  84   75 62 71 64
7 66  71   67 52 65 57
8 77  71   57 72 86 71
9 83 100   79 41 67 50
> # 直方图 
> hist(PCA$M,col="green")
> boxplot(PCA$M,col="blue")
> # 箱线图
> summary(PCA)
错误: unexpected input在"summary("里
> summary(PCA)
       M               P            Chem          C               H        
 Min.   :65.00   Min.   : 61   Min.   :49   Min.   :41.00   Min.   :65.00  
 1st Qu.:67.00   1st Qu.: 69   1st Qu.:67   1st Qu.:62.00   1st Qu.:67.00  
 Median :77.00   Median : 71   Median :75   Median :65.00   Median :71.00  
 Mean   :74.11   Mean   : 74   Mean   :70   Mean   :66.44   Mean   :73.56  
 3rd Qu.:78.00   3rd Qu.: 77   3rd Qu.:76   3rd Qu.:74.00   3rd Qu.:81.00  
 Max.   :83.00   Max.   :100   Max.   :80   Max.   :84.00   Max.   :86.00  
       E        
 Min.   :50.00  
 1st Qu.:57.00  
 Median :63.00  
 Mean   :63.33  
 3rd Qu.:71.00  
 Max.   :79.00  


PCA这个dataframe中提取math的成绩也可以用如下方式
> math <- PCA$m
> math
NULL
> math <- PCA$M
> math
[1] 65 77 67 80 74 78 66 77 83

> hist(math)
> # 柱形图
> barplot(table(PCA$M),col=c("blue","green")
+ )
> boxplot(PCA)
> boxplot(PCA[1:2])
> # 饼图 
> pie(table(PCA$M,col=c("grey","yellow"))
+ )
Error in table(PCA$M, col = c("grey", "yellow")) : 所有参数的长度都应一致
> length(M)
错误: 找不到对象'M'
> length(PCA$M)
[1] 9

 

> table(PCA$M)

65 66 67 74 77 78 80 83 
 1  1  1  1  2  1  1  1 

 

> # 多维列联表
> math
[1] 65 77 67 80 74 78 66 77 83
> # 接下来对math进行分段
> math <- cut(math,c(60,70,max(math)))
> math
[1] (60,70] (70,83] (60,70] (70,83] (70,83] (70,83] (60,70] (70,83] (70,83]
Levels: (60,70] (70,83]
> levels(math)=c("not bad","perfect")
> # cut(data,breaks)
> # levels(data) =c(names)
> table(math)
math
not bad perfect 
      3       6 
> physics <- PCA$P
> physics
[1]  61  77  63  69  70  84  71  71 100
> physics <- cut(physics,c(60,70,max(physics)))
> levels(physics)=c("not bad","perfect")
> # 接下是二维列联表
> table(math,physics)
错误: unexpected input在"table(math,"里
> table(math,physics)
         physics
math      not bad perfect
  not bad       2       1
  perfect       2       4

> # 多维列联表的条形图
> barplot(table(math,physics),beside=T)

> boxplot(physics~math)

 

> boxplot(PCA$M~PCA$P)
> 
> # 条件散点图
> plot(PCA$Chem,PCA$P)
> # 通过数学对C和P进行划分
> coplot(PCA$P~PCA$Chem|math)
> # 对应关系:coplot(y~x|z)
> # ,的对应关系:(x,y)
> 对应关系对应横纵坐标,y一般是纵坐标

 

> # (暴力做法)矩阵散点图
> pairs(PCA)
)
>)
>> pairs(PCA[c(1,3,5)])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值