什么是离散化
在不考虑数据的绝对大小的情况下,不改变数据的相对大小,对数据进行压缩。
有点抽象,怎么理解?
举个例子:
在数据范围是1-100000条件下,判断给出的10个数中出现最多的次数。
如果我们直接使用位图,就要100000个bit来记录。但是,这道题只给10个数据,而且要计算的是次数,只需要考虑数据的相对大小即可,我们可不可以想一个办法,只使用10个bit存储相对大小,就可以大大减少空间的使用,这就是离散化。
离散化方法
预备知识:
lower_bound
这个接口有4个参数:
前两个参数是容器的迭代器, 注意:这个接口传入的容器内的数据必须是有序的,以为底层用的是二分查找
val是比较的基准值,类型和容器内的数据一样
comp是比较函数,函数返回值是bool值。离散化方法可以直接使用默认的
返回值:
返回第一个使得比较函数的返回值为false的数据的迭代器
例子:
bool cmp(const int& e, const int& val)
{
return e >= val;
}
vector<int> v = { 30,28,26,25,21,20,19,16,1 };
// lower_bound 的目的:找出第一个 false 自定义函数的值---即 第