剑指 Offer 04. 二维数组中的查找

文章描述了一个二维数组,其中每行和每列都非递减排序。提供了一个解法,使用两个指针从右上角开始遍历矩阵,寻找目标整数。当遇到目标值时返回true,否则返回false。解法的时间复杂度为O(n),空间复杂度为O(1)。

题目描述

在一个 n * m 的二维数组中,每一行都按照从左到右 非递减 的顺序排序,每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:

现有矩阵 matrix 如下:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16,22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]

给定 target = 5,返回 true。

给定 target = 20,返回 false。

限制:

0 <= n <= 1000

0 <= m <= 1000

  • 解法一:
    使用两个指针从右上角遍历。
int j = matrix[0].size() - 1;

需要注意的是,由于在上面这行代码中假设了 matrix 至少有一行,但实际上如果 matrix 是空的,就会出现空指针引用,导致运行时错误。因此我在访问matriw前检查其是否为空,避免空指针引用。

时间复杂度:O(n)
空间复杂度:O(1)

class Solution {
public:
    bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
        if (matrix.empty() || matrix[0].empty()) {
            return false; // 空数组或者空行,直接返回false
        }

        int i = 0, j = matrix[0].size() - 1;
        while (i < matrix.size() && j >= 0) {
            if (target > matrix[i][j]) {
                i++;
           } else if (target < matrix[i][j]) {
                j--;
            } else {
                return true;
            }
        }
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值