参考《信息安全数学基础》裴定一
一、整数的因子分解
1.1 带余除法和整除性
定理1.1(带余除法):设 a a a和 b b b为整数, b > 0 b>0 b>0,则存在唯一的整数 q q q和 r r r使得 a = q b + r , 0 ≤ r < b a=qb+r,0\leq r<b a=qb+r,0≤r<b
带余除法也称为欧几里得除法, q q q称为 a a a被 b b b除得出的不完全商, r r r称为余数,余数都是非负整数。
取 a = 107 , b = 5 a=107,b=5 a=107,b=5则 q = [ 107 5 ] = [ 21.4 ] = [ 21 ] q=[\frac{107}{5}]=[21.4]=[21] q=[5107]=[21.4]=[21], r = 107 − 21 × 5 = 2 r=107-21 \times 5=2 r=107−21×5=2。
取 a = − 107 , b = 5 a=-107,b=5 a=−107,b=5则 q = [ − 107 5 ] = [ − 21.4 ] = q=[\frac{-107}{5}]=[-21.4]= q=[5−107]=[−21.4]= [ − 22 ] , r = − 107 − ( − 22 ) × 5 = 3 [-22],r=-107-(-22)\times5=3 [−22],r=−107−(−22)×5=3,即 − 107 = ( − 22 ) × 5 + 3 -107=(-22)\times5+3 −107=(−22)×5+3。
当 r = 0 r=0 r=0时,即 b b b能整除 a a a,这时称 b b b是 a a a的因子, a a a是 b b b的倍数,记为 b ∣ a b|a b∣a,|为整除符号。
显然整数符合三个性质:当 b > 0 , c > 0 b>0,c>0 b>0,c>0则
(1)若 c ∣ b , b ∣ a , c|b,b|a, c∣b,b∣a,则 c ∣ a c|a c∣a;
(2)若 b ∣ a , b|a, b∣a,则 b c ∣ a c bc|ac bc∣ac;
(3)若 c ∣ a , c ∣ b , c|a,c|b, c∣a,c∣b,则对任意整数 m , n , 有 c ∣ m a + n b m,n,有c|ma+nb m,n,有c∣ma+nb。
1.2 整数的表示
设 a a a为不大于1的整数,任一正整数 n n n可表示成
n = r 0 + r 1 a + r 2 a 2 + . . . + r t a t , t ≥ 0 , 0 ≤ r 1 < a , i = 0 , 1 , . . . , t n=r_0+r_1a+r_2a^2+...+r_ta^t, t\geq0,0\leq r_1<a,i=0,1,...,t n=r0+r1a+r2a2+...+rtat,t≥0,0≤r1<a,i=0,1,...,t这时可称为 n n n的 a a a进制表示。
1.3 最大公因子与辗转相除法
1.3.1 概念
a a a和 b b b仅可能有有限个公因子,其中最大的一个称为 a a a和 b b b的最大公因子,记为 ( a , b ) (a,b) (a,b)
定理1.2:设 a , b , c a,b,c a,b,c为三个正整数,且 a = b q + c a=bq+c a=bq+c,其中 q q q为整数,则 ( a , b ) = ( b , c ) (a,b)=(b,c) (a,b)=(b,c)。
由定理1.2可得 ( a , b ) = ( b , r 0 ) = ( r 0 , r 1 ) = ⋯ = ( r n − 2 , r n − 1 ) = r n − 1 (a,b)=(b,r_0)=(r_0,r_1)=\cdots=(r_{n-2},r_{n-1})=r_{n-1} (a,b)=(b,r0)=(r0,r1)=⋯=(rn−2,rn−1)=rn−1
辗转相除法:计算 ( a , b ) (a,b) (a,b),设 a = q 0 b + r 0 , 0 ≤ r 0 < b a=q_0b+r_0,0\leq r_0<b a=q0b+r0,0≤r0<b
如果 r 0 ≠ 0 r_0 \neq0 r0=0,设 b = q 1 r 0 + r 1 , 0 ≤ r 1 < r 0 b=q_1r_0+r_1,0\leq r_1<r_0 b=q1r0+r1,0≤r1<r0,
如果 r 1 ≠ 0 r_1 \neq0 r1=0,设 r 0 = q 2 r 1 + r 2 , 0 ≤ r 2 < r 1 r_0=q_2r_1+r_2,0\leq r_2<r_1 r0=q2r1+r2,0≤r2<r1,
如此下去,设 r i − 2 = q i r i − 1 + r i , 0 ≤ r i < r i − 1 r_{i-2}=q_ir_{i-1}+r_i,0\leq r_i<r_{i-1} ri−2=qiri−1+ri,0≤ri<ri−1, i = 3 , 4 , . . . i=3,4,... i=3,4,...
定理1.3:对任意两个正整数 a , b a,b a,b,存在整数 x x x和 y y y,使 ( a , b ) = x a + y b (a,b)=xa+yb (a,b)=xa+yb
显然有设 d d d是 a a a和 b b b的任一公因子,则 d ∣ ( a , b ) d|(a,b) d∣(a,b)
设 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是整数, d d d为正整数,若
(1) d ∣ a i , 1 ≤ i ≤ n ; d|a_i,1\leq i\leq n; d∣ai,1≤i≤n;
(2)对任一正整数 c c c,若 c ∣ a i , 1 ≤ i ≤ n c|a_i,1\leq i\leq n c∣ai,1≤i≤n,则 c ∣ d c|d c∣d ,则 d d d称为 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an的最大公因子,记为 d = ( a 1 , a 2 , . . . , a n ) d=(a_1,a_2,...,a_n) d=(a1,a2,...,an)
定理1.4:设 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是n个整数,令 ( a 1 , a 2 ) = d 1 , ( d 1 , a 3 ) = d 2 , . . . , ( d n − 2 , a n ) = d n − 1 (a_1,a_2)=d_1,(d_1,a_3)=d_2,...,(d_{n-2},a_n)=d_{n-1} (a1,a2)=d1,(d1,a3)=d2,...,(dn−2,an)=dn−1
则 ( a 1 , a 2 , . . . , a n ) = d n − 1 (a_1,a_2,...,a_n)=d_{n-1} (a1,a2,...,an)=dn−1,因而存在整数 u 1 , u 2 , . . . , u n u_1,u_2,...,u_n u1,u2,...,un ,使 a 1 u 1 + a 2 u 2 + . . . + a n u n = ( a 1 , a 2 , . . . , a n ) a_1u_1+a_2u_2+...+a_nu_n=(a_1,a_2,...,a_n) a1u1+a2u2+...+anun=(a1,a2,...,an)
1.3.2 习题
【例1】用辗转相除法计算 ( 2104 , 2720 ) (2104,2720) (2104,2720)和 ( 2104 , 2720 , 1046 ) (2104,2720,1046) (2104,2720,1046)
【例2】用辗转相除法计算 a = 8142 a=8142 a=8142和 b = 11766 b=11766 b=11766的最大公因子,及整数 x x x和 y y y,使得 ( a , b ) = a x + b y (a,b)=ax+by (a,b)=ax+by
【例3】设 ( a , b ) = 14 (a,b)=14 (a,b)=14,计算 ( 3 a + 4 b , 5 a + 7 b ) (3a+4b,5a+7b) (3a+4b,5a+7b)和 ( 6 a + 8 b , 10 a + 14 b ) (6a+8b,10a+14b) (6a+8b,10a+14b)
【例4】证明:对于任意整数 n n n, 21 n + 4 14 n + 3 \frac{21n+4}{14n+3} 14n+321n+4是既约分数
1.4 整数的唯一分解定理
1.4.1 概念
素数、复合数、互素:两个整数a和b,若a和b的最大公因子等于1,则a和b互素。
定理1.5:设 p p p为素数, a , b a,b a,b为整数,若 p ∣ a b p|ab p∣ab,则 p ∣ a p|a p∣a或 p ∣ b p|b p∣b
定理1.6(唯一分解定理):任一不为1的正整数 n n n均可唯一地表示为 n = p 1 a 1 p 2 a 2 ⋯ p k a k n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} n=p1a1p2a2⋯pkak,这里 p 1 < p 2 < ⋯ < p k p_1<p_2< \cdots <p_k p1<p2<⋯<pk为素数, a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots ,a_k a1,a2,⋯,ak为自然数。上式称为 n n n的标准分解式。
设 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots ,a_n a1,a2,⋯,an是非零整数, m m m为正整数,如果
(1) a i ∣ m , 1 ≤ i ≤ n a_i|m,1\leq i\leq n ai∣m,1≤i≤n;
(2)对任一正整数 u u u,若 a i ∣ u , 1 ≤ i ≤ n a_i|u,1\leq i\leq n ai∣u,1≤i≤n,则 m ∣ u m|u m∣u。
那么, m m m称为 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots ,a_n a1,a2,⋯,an的最小公倍数,记为 [ a 1 , a 2 , ⋯ , a n ] [a_1,a_2,\cdots ,a_n] [a1,a2,⋯,an]
定理1.7:设 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots ,a_n a1,a2,⋯,an为 n n n个非零整数,令 [ a 1 , a 2 ] = m 1 , [ m 1 , a 3 ] = m 2 , . . . , [ m n − 2 , a n ] = m n − 1 [a_1,a_2]=m_1,[m_1,a_3]=m_2,...,[m_{n-2},a_n]=m_{n-1} [a1,a2]=m1,[m1,a3]=m2,...,[mn−2,an]=mn−1,则 [ a 1 , a 2 , . . . , a n ] = m n − 1 [a_1,a_2,...,a_n]=m_{n-1} [a1,a2,...,an]=mn−1。
定理1.8:设 a , b a,b a,b为两个正整数,则 [ a , b ] = a b ( a , b ) [a,b]=\frac{ab}{(a,b)} [a,b]=(a,b)ab。(最小公倍数的计算方法)
例题:计算 [ 2295 , 4471 ] [2295,4471] [2295,4471]。
( 2295 , 4471 ) = 17 (2295,4471)=17 (2295,4471)=17,故 [ 2295 , 4471 ] = 2295 × 4471 17 = 603585 [2295,4471]=\frac{2295\times4471}{17}=603585 [2295,4471]=172295×4471=603585
1.4.2 习题
【例1】设 a , b , c a,b,c a,b,c为正整数,若 c ∣ a b c|ab c∣ab, a a a与 c c c互素,则 c ∣ b c|b c∣b
【例2】若 ( a , b ) = 1 (a,b)=1 (a,b)=1,且 a ∣ c , b ∣ c a|c,b|c a∣c,b∣c,则 a b ∣ c ab|c ab∣c
【例3】证明: 6 ∣ n ( n + 1 ) ( 2 n + 1 ) 6|n(n+1)(2n+1) 6∣n(n+1)(2n+1),其中 n n n为任意整数
【例4】证明:若 a 2 ∣ b 2 a^2|b^2 a2∣b2,则 a ∣ b a|b a∣b
1.5 素数
1.5.1 概念
定理1.9:素数有无穷多个
素数有无穷个,但它的分布极不规则,若 n > 2 n>2 n>2为一个整数,则连续 n − 1 n-1 n−1个整数 n ! + 2 , n ! + 3 , ⋯ , n ! + n n!+2,n!+3,\cdots,n!+n n!+2,n!+3,⋯,n!+n都不是素数,可见有任意长的整数区间不含有素数
定理1.10:设 n > 1 n>1 n>1,若 a n − 1 a^n-1 an−1为素数,则 a = 2 a=2 a=2, n n n为素数。
整数 M n = 2 n − 1 M_n=2^n-1 Mn=2n−1称为第n个Mersenne数,当p为素数,且 M p = 2 p − 1 M_p=2^p-1 Mp=2p−1也为素数时, M p M_p Mp称为Mersenne素数(梅森素数)
至今已知有48个Mersenne素数,它们所对应的p为
定理1.11:若 2 m + 1 2^m+1 2m+1为素数,则m一定是2的方幂
形如 F n = 2 2 n + 1 F_n=2^{2^n}+1 Fn=22n+1的数称为Fermat数,如果此数是素数,则称为Fermat素数(费马素数)
最小的五个Fermat数为: F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , F 4 = 65537 F_0=3,F_1=5,F_2=17,F_3=257,F_4=65537 F0=3,F1=5,F2=17,F3=257,F4=65537,但是 F 5 F_5 F5为合数
1.5.2 习题
【例1】对任意给定正整数 n n n,自然数列中一定存在 n n n个连续的合数
【例2】证明:
(1)任一形如 3 k − 1 , 4 k − 1 , 6 k − 1 3k-1,4k-1,6k-1 3k−1,4k−1,6k−1形式的正整数必有同样形式的素因子
(2)形如 4 k − 1 4k-1 4k−1的素数有无穷多个
(3)形如 6 k − 1 6k-1 6k−1的素数有无穷多个
【例3】以下哪个数是素数? A. 2 11 − 1 2^{11}-1 211−1;B. 2 13 − 1 2^{13}-1 213−1;C. 2 15 − 1 2^{15}-1 215−1;D. 6 7 − 1 6^{7}-1 67−1
答案:B
二、同余式
2.1 中国剩余定理
2.1.1 概念
定理2.1:设 a , b , d , a 1 , a 2 , b 1 , b 2 , n a,b,d,a_1,a_2,b_1,b_2,n a,b,d,a1,a2,b1,b2,n为自然数,则
- 若 a 1 ≡ b 1 ( m o d n ) , a 2 ≡ b 2 ( m o d n ) a_1 \equiv b_1\pmod n,a_2\equiv b_2\pmod n a1≡b1(modn),a2≡b2(modn),则 a 1 + a 2 ≡ b 1 + b 2 ( m o d n ) a_1+a_2\equiv b_1+b_2\pmod n a1+a2≡b1+b2(modn)
- 若 a 1 ≡ b 1 ( m o d n ) , a 2 ≡ b 2 ( m o d n ) a_1 \equiv b_1\pmod n,a_2\equiv b_2\pmod n a1≡b1(modn),a2≡b2(modn),则 a 1 a 2 ≡ b 1 b 2 ( m o d n ) a_1a_2\equiv b_1b_2\pmod n a1a2≡b1b2(modn)
- 若 a d ≡ b d ( m o d n ) ad \equiv bd\pmod n ad≡bd(modn),且 ( d , n ) = 1 (d,n)=1 (d,n)=1,则 a ≡ b ( m o d n ) a\equiv b\pmod n a≡b(modn)
- 若 a ≡ b ( m o d n ) a\equiv b\pmod n a≡b(modn), d d d是 a , b , n a,b,n a,b,n的任一公因子,则 a d ≡ b d ( m o d n d ) \frac{a}{d}\equiv \frac{b}{d}\pmod {\frac{n}{d}} da≡db(moddn)
- 若 a ≡ b ( m o d n i ) , i = 1 , 2 , ⋯ , k a \equiv b\pmod {n_i},i=1,2,\cdots,k a≡b(modni),i=1,2,⋯,k,则 a ≡ b ( m o d [ n 1 , n 2 , ⋯ , n k ] ) a\equiv b\pmod {[n_1,n_2,\cdots,n_k]} a≡b(mod[n1,n2,⋯,nk]),其中 [ n 1 , n 2 , ⋯ , n k ] [n_1,n_2,\cdots,n_k] [n1,n2,⋯,nk]表示 n 1 , n 2 , ⋯ , n k n_1,n_2,\cdots,n_k n1,n2,⋯,nk的最小公倍数
- 若 a ≡ b ( m o d n ) , d ∣ n , d > 0 a \equiv b\pmod n,d|n,d>0 a≡b(modn),d∣n,d>0,则 a ≡ b ( m o d d ) a\equiv b\pmod d a≡b(modd)
- 若 a ≡ b ( m o d n ) a \equiv b\pmod n a≡b(modn),则 ( a , n ) = ( b , n ) (a,n)=(b,n) (a,n)=(b,n)
定理2.2:设 m 1 , m 2 m_1,m_2 m1,m2为正整数, m m m是 m 1 , m 2 m_1,m_2 m1,m2的最小公倍数,则同余方程组 { x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) \left\{\begin{matrix} x\equiv a_1\pmod {m_1}\\ x\equiv a_2\pmod {m_2} \end{matrix}\right. {x≡a1(modm1)x≡a2(modm2) ,有解的充分必要条件是 ( m 1 , m 2 ) ∣ a 1 − a 2 (m_1,m_2)|a_1-a_2 (m1,m2)∣a1−a2,如果这个条件成立,则方程组有且仅有一个小于 m m m的非负整数解
定理2.3(中国剩余定理):设 m 1 , m 2 , ⋯ , m r m_1,m_2,\cdots,m_r m1,m2,⋯,mr是两两互素的自然数,令 m = m 1 m 2 ⋯ m r = m i M i m=m_1m_2\cdots m_r=m_iM_i m=m1m2⋯mr=miMi,即 M i = m 1 ⋯ m i − 1 m i + 1 ⋯ m r , i = 1 , 2 , ⋯ , r M_i=m_1\cdots m_{i-1}m_{i+1}\cdots m_r,i=1,2,\cdots ,r Mi=m1⋯mi−1mi+1⋯mr,i=1,2,⋯,r,则方程组
{ x ≡ b 1 ( m o d m 1 ) x ≡ b 2 ( m o d m 2 ) ⋯ x ≡ b r ( m o d m r ) \left\{\begin{matrix} x\equiv b_1\pmod {m_1}\\ x\equiv b_2\pmod {m_2} \\ \cdots \\ x\equiv b_r\pmod {m_r} \end{matrix}\right. ⎩ ⎨ ⎧x≡b1(modm1)x≡b2(modm2)⋯x≡br(modmr)
的解为 x = M 1 ′ M 1 b 1 + M 2 ′ M 2 b 2 + ⋯ + M r ′ M r b r ( m o d m ) x=M_1'M_1b_1+M_2'M_2b_2+\cdots+M'_rM_rb_r\pmod m x=M1′M1b1+M2′M2b2+⋯+Mr′Mrbr(modm),其中 M i ′ M'_i Mi′是整数,使 M i ′ M i ≡ 1 ( m o d m i ) , i = 1 , 2 , ⋯ , r M_i'M_i\equiv 1 \pmod {m_i},i=1,2,\cdots,r Mi′Mi≡1(modmi),i=1,2,⋯,r。该方程组有且仅有一个小于 m m m的非负整数解
2.1.2 习题
【例1】求解下列同余方程组:(1) { x ≡ 2 ( m o d 3 ) x ≡ 1 ( m o d 4 ) x ≡ 3 ( m o d 5 ) \left\{\begin{matrix} x\equiv 2\pmod {3}\\ x\equiv 1\pmod {4} \\ x\equiv 3\pmod {5} \end{matrix}\right. ⎩ ⎨ ⎧x≡2(mod3)x≡1(mod4)x≡3(mod5) ,(2) { x ≡ 2 ( m o d 5 ) x ≡ 3 ( m o d 7 ) x ≡ 4 ( m o d 9 ) \left\{\begin{matrix} x\equiv 2\pmod {5}\\ x\equiv 3\pmod {7} \\ x\equiv 4\pmod {9} \end{matrix}\right. ⎩ ⎨ ⎧x≡2(mod5)x≡3(mod7)x≡4(mod9)
【例2】求解下列同余方程组:
(1) { x ≡ 7 ( m o d 10 ) x ≡ 3 ( m o d 12 ) x ≡ 12 ( m o d 15 ) \left\{\begin{matrix} x\equiv 7\pmod {10}\\ x\equiv 3\pmod {12} \\ x\equiv 12\pmod {15} \end{matrix}\right. ⎩ ⎨ ⎧x≡7(mod10)x≡3(mod12)x≡12(mod15) ,(2) { x ≡ 1 ( m o d 6 ) x ≡ 4 ( m o d 9 ) x ≡ 7 ( m o d 15 ) \left\{\begin{matrix} x\equiv 1\pmod {6}\\ x\equiv 4\pmod {9} \\ x\equiv 7\pmod {15} \end{matrix}\right. ⎩ ⎨ ⎧x≡1(mod6)x≡4(mod9)x≡7(mod15)
2.2. 剩余类环
2.2.1 概念
设 m m m是一个自然数,任一整数用m除所得的余数可能为 0 , 1 , ⋯ , m − 1 0,1,\cdots,m-1 0,1,⋯,m−1中的一个,所有用 m m m除所得的余数为 i ( 0 ≤ i ≤ m − 1 ) i(0\le i\le m-1) i(0≤i≤m−1)的整数组成的子集合记成 [ i ] [i] [i],这样有 Z = [ 0 ] ∪ [ 1 ] ∪ ⋯ [ m − 1 ] \mathbb{Z}=[0]\cup [1] \cup \cdots[m-1] Z=[0]∪[1]∪⋯[m−1]。子集合 [ i ] [i] [i]为整数模m的一个剩余类,这样整数模 m m m共有 m m m个剩余类
在整数模m的所有剩余类中各取一个代表元 a 1 , a 2 , ⋯ , a m a_1,a_2,\cdots,a_m a1,a2,⋯,am, a i ∈ [ i − 1 ] a_i \in [i-1] ai∈[i−1], i = 1 , 2 , ⋯ , m i=1,2,\cdots,m i=1,2,⋯,m,则 a 1 , a 2 , ⋯ , a m a_1,a_2,\cdots,a_m a1,a2,⋯,am称为整数模m的一个完全剩余系。通常完全剩余系取为 0 , 1 , ⋯ , m − 1 0,1,\cdots,m-1 0,1,⋯,m−1
与m互素的剩余类的个数记为 φ ( m ) \varphi(m) φ(m), φ ( m ) \varphi(m) φ(m)称为欧拉函数
φ ( m ) \varphi(m) φ(m)就是 0 , 1 , ⋯ , m − 1 0,1,\cdots,m-1 0,1,⋯,m−1中与m互素的数的个数,在与m互素的 φ ( m ) \varphi(m) φ(m)个剩余类中各取一个代表元 a 1 , a 2 , ⋯ , a φ ( m ) a_1,a_2,\cdots,a_{\varphi(m)} a1,a2,⋯,aφ(m),组成的集合称为整数模m的一个缩剩余系,简称为缩系
定理2.4(Euler定理):若 ( k , m ) = 1 (k,m)=1 (k,m)=1,则 k φ ( m ) ≡ 1 ( m o d m ) k^{\varphi(m)}\equiv 1 \pmod m kφ(m)≡1(modm)
当p为素数时, φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p−1,对素数幂 p n p^n pn,因不超过 p n p^n pn的正整数中有 p n − 1 p^{n-1} pn−1个p的倍数,故 φ ( p n ) = p n − p n − 1 = p n − 1 ( p − 1 ) \varphi(p^n)=p^n-p^{n-1}=p^{n-1}(p-1) φ(pn)=pn−pn−1=pn−1(p−1)
例:取 p = 7 p=7 p=7(这时 φ ( 7 ) = 6 \varphi(7)=6 φ(7)=6),由直接计算可得 2 6 ≡ 64 ≡ 1 ( m o d 7 ) 2^6\equiv 64\equiv1 \pmod 7 26≡64≡1(mod7), 3 6 ≡ ( 9 ) 3 ≡ ( 2 ) 3 ( m o d 7 ) 3^6\equiv (9)^3\equiv (2)^3 \pmod 7 36≡(9)3≡(2)3(mod7), 4 6 ≡ ( − 3 ) 6 ≡ 1 ( m o d 7 ) 4^6\equiv (-3)^6\equiv1 \pmod 7 46≡(−3)6≡1(mod7), 5 6 ≡ ( − 2 ) 6 ≡ 1 ( m o d 7 ) 5^6\equiv (-2)^6\equiv1 \pmod 7 56≡(−2)6≡1(mod7), 6 6 ≡ ( − 1 ) 6 ≡ 1 ( m o d 7 ) 6^6\equiv (-1)^6\equiv1 \pmod 7 66≡(−1)6≡1(mod7)
定理2.5(Fermat小定理):若p为素数,则对所有的整数 a a a有 a p ≡ a ( m o d p ) a^p\equiv a\pmod p ap≡a(modp)
定理2.6:若 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,如果x遍历 m 1 m_1 m1的一个完全剩余系,y遍历 m 2 m_2 m2的一个完全剩余系,那么 m 1 y + m 2 x m_1y+m_2x m1y+m2x遍历 m 1 m 2 m_1m_2 m1m2的一个完全剩余系
定理2.7:若 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,如果x遍历 m 1 m_1 m1的一个缩系,y遍历 m 2 m_2 m2的一个缩系,那么 m 1 y + m 2 x m_1y+m_2x m1y+m2x遍历 m 1 m 2 m_1m_2 m1m2的一个缩系
定理2.8:若 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,那么 φ ( m 1 m 2 ) = φ ( m 1 ) φ ( m 2 ) \varphi(m_1m_2)=\varphi(m_1)\varphi(m_2) φ(m1m2)=φ(m1)φ(m2)
定理2.9:若 m = p 1 l 1 p 2 l 2 ⋯ p s l s m=p_1^{l_1}p_2^{l_2}\cdots p_s^{l_s} m=p1l1p2l2⋯psls, p 1 < p 2 < ⋯ < p s p_1<p_2<\cdots <p_s p1<p2<⋯<ps,则 φ ( m ) = m ∏ i = 1 s ( 1 − 1 p i ) \varphi(m)=m\prod_{i=1}^s(1-\frac{1}{p_i}) φ(m)=m∏i=1s(1−pi1)
2.2.2 习题
【例1】写出模16,18的缩系
【例2】证明:当 m > 2 m>2 m>2时, 0 2 , 1 2 , ⋯ , ( m − 1 ) 2 0^2,1^2,\cdots,(m-1)^2 02,12,⋯,(m−1)2一定不是模m的完全剩余系
【例3】证明:
(1) φ ( n ) = 1 2 n \varphi(n)=\frac{1}{2}n φ(n)=21n当且仅当 n = 2 k , k ∈ N n=2^k,k\in \mathbb{N} n=2k,k∈N;
(2) φ ( n ) = 1 3 n \varphi(n)=\frac{1}{3}n φ(n)=31n当且仅当 n = 2 k ⋅ 3 i , k , i ∈ N n=2^k \cdot 3^i,k,i\in \mathbb{N} n=2k⋅3i,k,i∈N
2.3 同余方程
2.3.1 概念
定理2.10:设 a , b , n a,b,n a,b,n为整数,则方程 a x + b y = n ax+by=n ax+by=n有整数解的充分必要条件是 ( a , b ) ∣ n (a,b)|n (a,b)∣n
定理2.11:设 a , b , n a,b,n a,b,n为整数, ( a , b ) = 1 (a,b)=1 (a,b)=1, x 0 , y 0 x_0,y_0 x0,y0为方程 a x + b y = n ax+by=n ax+by=n的一个整数解,则该方程任一解可表示为 x = x 0 + b t , y = y 0 − a t x=x_0+bt,y=y_0-at x=x0+bt,y=y0−at,且对任何整数t,上式都是解
定理2.12:设 a , b , m a,b,m a,b,m是整数, ( a , m ) ∣ b (a,m)|b (a,m)∣b,则同余方程 a x + b ≡ 0 ( m o d m ) ax+b\equiv 0 \pmod m ax+b≡0(modm)有 ( a , m ) (a,m) (a,m)个模m互不同余的解
定理2.13:设 m 1 , m 2 m_1,m_2 m1,m2为整数, ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,则同余方程 f ( x ) ≡ 0 ( m o d m 1 m 2 ) f(x)\equiv 0\pmod{m_1m_2} f(x)≡0(modm1m2)的解数为二方程 f ( x ) ≡ 0 ( m o d m 1 ) f(x)\equiv 0\pmod {m_1} f(x)≡0(modm1), f ( x ) ≡ 0 ( m o d m 2 ) f(x)\equiv 0\pmod {m_2} f(x)≡0(modm2)的解数之积
定理2.14:设p为素数, f ( x ) = a n x n + ⋯ + a 0 f(x)=a_nx^n+\cdots +a_0 f(x)=anxn+⋯+a0是一整系数多项式,则同余方程 f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0 \pmod p f(x)≡0(modp)的解数小于等于n(重数计算在内)
(Wilson)若p为素数,则 ( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)!\equiv -1\pmod p (p−1)!≡−1(modp)
【例题】化简同余方程 x 15 + 4 x 12 + 2 x 11 + x 9 + x ≡ 0 ( m o d 5 ) x^{15}+4x^{12}+2x^{11}+x^9+x\equiv 0\pmod 5 x15+4x12+2x11+x9+x≡0(mod5)
2.3.2 习题
【例1】求解下列同余方程:(1) 7 x ≡ 1 ( m o d 31 ) 7x\equiv 1\pmod {31} 7x≡1(mod31);(2) 541 x ≡ 539 ( m o d 3571 ) 541x\equiv 539\pmod {3571} 541x≡539(mod3571);(3) 3504 x ≡ 12 ( m o d 5418 ) 3504x\equiv 12\pmod {5418} 3504x≡12(mod5418);(4) 2589 x ≡ 15 ( m o d 2919 ) 2589x\equiv 15\pmod {2919} 2589x≡15(mod2919)
【例2】求解同余方程组 { 3 x ≡ 1 ( m o d 10 ) 4 x ≡ 3 ( m o d 15 ) \left\{\begin{matrix} 3x\equiv 1\pmod{10}\\ 4x\equiv 3\pmod{15} \end{matrix}\right. {3x≡1(mod10)4x≡3(mod15)
【例3】若 f ( x ) ≡ 0 ( m o d 13 ) f(x)\equiv 0\pmod {13} f(x)≡0(mod13)的解为 x ≡ 2 , 7 ( m o d 13 ) x\equiv 2,7\pmod{13} x≡2,7(mod13), f ( x ) ≡ 0 ( m o d 9 ) f(x)\equiv 0 \pmod 9 f(x)≡0(mod9)的解为 1 , 3 , 4 1,3,4 1,3,4,求出 f ( x ) ≡ 0 ( m o d 117 ) f(x)\equiv 0 \pmod {117} f(x)≡0(mod117)的全部解
【例4】试求同余方程 f ( x ) = x 3 + x + 1 ≡ 0 ( m o d 3 4 ) f(x)=x^3+x+1\equiv 0\pmod {3^4} f(x)=x3+x+1≡0(mod34)的所有解
2.4 原根
2.4.1 概念
由欧拉定理,若 ( a , m ) = 1 (a,m)=1 (a,m)=1,那么 a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)}\equiv 1\pmod m aφ(m)≡1(modm),满足 a d ≡ 1 ( m o d m ) a^d\equiv 1\pmod m ad≡1(modm)的最小正整数 d 0 d_0 d0称为a模m的阶,即为 δ m ( a ) \delta_m(a) δm(a)
定理2.15:设 ( a , m ) = 1 , d 0 = δ m ( a ) (a,m)=1,d_0=\delta_m(a) (a,m)=1,d0=δm(a),则 a k ≡ ( m o d m ) a^k\equiv \pmod m ak≡(modm)当且仅当 d 0 ∣ k d_0|k d0∣k
定理2.16:给定m及 ( a , m ) = 1 (a,m)=1 (a,m)=1,如果 δ m ( a ) = l \delta_m(a)=l δm(a)=l,则对任意的正整数k,有 δ m ( a k ) = l ( l , k ) \delta_m(a^k)=\frac{l}{(l,k)} δm(ak)=(l,k)l
【例题】取 m = 11 , φ ( 11 ) = 10 = 2 ⋅ 5 m=11,\varphi(11)=10=2\cdot 5 m=11,φ(11)=10=2⋅5,则对任意整数 a a a, ( a , 11 ) = 1 (a,11)=1 (a,11)=1,则a模 m = 11 m=11 m=11的阶一定是1,2,5,10
定理2.17:设k为正整数,p为素数,则同余方程 x k ≡ 1 ( m o d p ) x^k\equiv 1\pmod p xk≡1(modp)的解数为 ( k , p − 1 ) (k,p-1) (k,p−1)
定理2.18:设 l ∣ p − 1 l|p-1 l∣p−1,p为素数,则模p的阶为l的互不同余的整数个数为 φ ( l ) \varphi(l) φ(l)。特别地,有 φ ( p − 1 ) \varphi(p-1) φ(p−1)个互不同余的整数模p的阶为 p − 1 p-1 p−1
设m是正整数,a是整数,若 δ m ( a ) = φ ( m ) \delta_m(a)=\varphi(m) δm(a)=φ(m),则称a为模m的一个原根
当 m = p m=p m=p为素数时,由于 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p−1,故阶为p-1的数是模p的原根,由定理2.18,模p的原根总是存在的,而且有 φ ( p − 1 ) \varphi(p-1) φ(p−1)个
定理2.19:
(1)对于奇素数p和正整数l, p l p^l pl的原根总是存在的。若g是p的原根,则g和 g + p g+p g+p中总有一个是 g 2 g^2 g2的原根;若g是 p 2 p^2 p2的原根,则g是 p l p^l pl的原根,其中 l ≥ 1 l\ge 1 l≥1
(2)对于奇素数p和正整数l, 2 p l 2p^l 2pl的原根总是存在的。若g是 p l p^l pl的原根,则g和 g + p l g+p^l g+pl中总有一个是 g 2 g^2 g2的原根
(3)2的原根是1,4的原根是3
(4)对于其它形式的整数,其原根均不存在
定理2.21:设m为正整数, a , b a,b a,b为整数, δ m ( a ) = u \delta_m(a)=u δm(a)=u, δ m ( b ) = v \delta_m(b)=v δm(b)=v, ( u , v ) = 1 (u,v)=1 (u,v)=1,则 δ m ( a b ) = u v \delta_m(ab)=uv δm(ab)=uv
【例】求模41的原根
2.4.2 习题
【例1】证明:若 a b ≡ 1 ( m o d m ) ab\equiv 1\pmod m ab≡1(modm),则 δ m ( a ) = δ m ( b ) \delta_m(a)=\delta_m(b) δm(a)=δm(b)
【例2】设 δ m ( a ) = s \delta_m(a)=s δm(a)=s, δ m ( b ) = t \delta_m(b)=t δm(b)=t,问 δ m ( a b ) \delta_m(ab) δm(ab)一定等于 s t st st吗
【例3】令 p = 29 p=29 p=29,在剩余类环 Z 29 \mathbb{Z}_{29} Z29中,元素的阶d都能取什么值?对每一个可能的阶d,计算出所有阶为d的元素
【例4】求模50的全部原根
φ ( 50 ) = 50 × 1 2 × 4 5 = 20 \varphi(50)=50\times \frac{1}{2}\times \frac{4}{5}=20 φ(50)=50×21×54=20,有20个缩系; φ ( 20 ) = 20 × 1 2 × 4 5 = 8 \varphi(20)=20\times \frac{1}{2} \times \frac{4}{5}=8 φ(20)=20×21×54=8,有8个原根
20的因子有:1,2,4,5,10,20
3 1 = 3 3^1=3 31=3, 3 2 = 9 3^2=9 32=9, 3 3 = 27 3^3=27 33=27, 3 4 = 31 3^4=31 34=31, 3 5 = 43 3^5=43 35=43, 3 6 = 29 3^6=29 36=29, 3 7 = 37 3^7=37 37=37, 3 8 = 11 3^8=11 38=11, 3 9 = 33 3^9=33 39=33, 3 10 = 49 3^{10}=49 310=49, 3 11 = 47 3^{11}=47 311=47, 3 12 = 41 3^{12}=41 312=41, 3 13 = 23 3^{13}=23 313=23, 3 14 = 19 3^{14}=19 314=19, 3 15 = 7 3^{15}=7 315=7, 3 16 = 21 3^{16}=21 316=21, 3 17 = 13 3^{17}=13 317=13, 3 18 = 39 3^{18}=39 318=39, 3 19 = 17 3^{19}=17 319=17, 3 20 = 1 3^{20}=1 320=1
所以3是模50的原根
其中,与20互质的数有1,3,7,9,11,13,17,19,对应的是 3 1 , 3 3 , 3 9 , 3 11 , 3 13 , 3 17 , 3 19 3^1,3^3,3^9,3^{11},3^{13},3^{17},3^{19} 31,33,39,311,313,317,319,即3,27,37,33,47,23,13,17
即模50的所有原根有3,27,37,33,47,23,13,17;
【例5】整数14和15的原根分别有()个和()个
φ ( 14 ) = 14 × 1 2 × 6 7 = 6 \varphi(14)=14\times \frac{1}{2}\times\frac{6}{7}=6 φ(14)=14×21×76=6, φ ( 6 ) = 6 × 1 2 × 2 3 = 2 \varphi(6)=6\times\frac{1}{2}\times\frac{2}{3}=2 φ(6)=6×21×32=2,14有2个原根
由于15不满足定理2.19,所以没有原根
三、二次剩余
3.1 Legendre符号及Euler判别法则
3.1.1 概念
设m为大于1的正整数, ( n , m ) = 1 (n,m)=1 (n,m)=1,如果方程 x 2 ≡ n ( m o d m ) x^2\equiv n\pmod m x2≡n(modm)有解,则n称为模m的二次剩余,否则称为模m的二次非剩余
设p为奇素数,n为整数,关于整变量n的函数 ( n p ) = { 1 若 n 为模 p 的二次剩余 − 1 若 n 为模 p 的二次非剩余 0 p ∣ n (\frac{n}{p})=\left\{\begin{matrix} 1&若n为模p的二次剩余\\ -1 &若n为模p的二次非剩余\\ 0 &p|n \end{matrix}\right. (pn)=⎩ ⎨ ⎧1−10若n为模p的二次剩余若n为模p的二次非剩余p∣n,称为模 p p p的Legendre符号
定理3.1:Legendre符号有下列基本性质:
- 若 n 1 ≡ n 2 ( m o d p ) n_1\equiv n_2\pmod p n1≡n2(modp),则 ( n 1 p ) = ( n 2 p ) (\frac{n_1}{p})=(\frac{n_2}{p}) (pn1)=(pn2)
- 若 p ∤ n p \not| n p∣n,则 ( n 2 p ) = 1 (\frac{n^2}{p})=1 (pn2)=1
- ( 1 p ) = 1 (\frac{1}{p})=1 (p1)=1
- 同余方程 x 2 ≡ n ( m o d p ) x^2\equiv n\pmod p x2≡n(modp)的解数为 1 + ( n p ) 1+(\frac{n}{p}) 1+(pn)
定理3.2:设 p p p为奇素数,则模 p p p的缩系中有 1 2 ( p − 1 ) \frac{1}{2}(p-1) 21(p−1)个二次剩余,有 1 2 ( p − 1 ) \frac{1}{2}(p-1) 21(p−1)个二次非剩余,且 1 2 , 2 2 , ⋯ , ( 1 2 ( p − 1 ) ) 2 1^2,2^2,\cdots,(\frac{1}{2}(p-1))^2 12,22,⋯,(21(p−1))2为所有的模 p p p二次剩余
定理3.3(Euler判别法):设 p p p为奇素数, p ∤ n p\not | n p∣n,则 ( n p ) ≡ n p − 1 2 ( m o d p ) (\frac{n}{p})\equiv n^{\frac{p-1}{2}}\pmod p (pn)≡n2p−1(modp)
定理3.4:设 p p p为奇素数, m m m, n n n为整数,则 ( m n p ) = ( m p ) ( n p ) (\frac{mn}{p})=(\frac{m}{p})(\frac{n}{p}) (pmn)=(pm)(pn)
定理3.5(高斯引理):设 p p p为奇素数, p ∤ n p\not | n p∣n,设 1 2 ( p − 1 ) \frac{1}{2}(p-1) 21(p−1)个数 n , 2 n , ⋯ , 1 2 ( p − 1 ) n n,2n,\cdots,\frac{1}{2}(p-1)n n,2n,⋯,21(p−1)n,模p的最小正余数中有m个大于 p 2 \frac{p}{2} 2p,则 ( n p ) = ( − 1 ) m (\frac{n}{p})=(-1)^m (pn)=(−1)m
定理3.6:若p为奇素数,则 ( 2 p ) = ( − 1 ) 1 8 ( p 2 − 1 ) (\frac{2}{p})=(-1)^{\frac{1}{8}(p^2-1)} (p2)=(−1)81(p2−1)
3.1.2 习题
【例1】令 p = 11 p=11 p=11,试写出所有模p的二次剩余
【例2】令 p = 11 p=11 p=11,取 a = 3 a=3 a=3,利用高斯引理,计算Legendre符号 ( 3 11 ) (\frac{3}{11}) (113)
3.2 二次互反律
3.2.1 概念
定理3.7(二次互反律):设 p , q p,q p,q为奇素数, p ≠ q p\not =q p=q,则 ( p q ) ( q p ) = ( − 1 ) p − 1 2 q − 1 2 (\frac{p}{q})(\frac{q}{p})=(-1)^{\frac{p-1}{2}\frac{q-1}{2}} (qp)(pq)=(−1)2p−12q−1
【例】求所有奇素数 p ≠ 11 p\not =11 p=11,它以11为其二次剩余
3.2.2 习题
【例1】计算下列Legendre符号: ( 12 47 ) (\frac{12}{47}) (4712), ( 28 53 ) (\frac{28}{53}) (5328), ( 71 73 ) (\frac{71}{73}) (7371), ( − 32 97 ) (\frac{-32}{97}) (97−32), ( 16 233 ) (\frac{16}{233}) (23316), ( − 105 223 ) (\frac{-105}{223}) (223−105), ( 91 563 ) (\frac{91}{563}) (56391)
【例2】判断下列同余方程是否有解:
(i) x 2 ≡ − 6 ( m o d 91 ) x^2\equiv -6 \pmod {91} x2≡−6(mod91);
(ii) 11 x 2 ≡ 5 ( m o d 227 ) 11x^2\equiv 5 \pmod {227} 11x2≡5(mod227);
(iii) x 2 ≡ 11 ( m o d 511 ) x^2\equiv 11 \pmod {511} x2≡11(mod511);
(iv) 5 x 2 ≡ − 14 ( m o d 6193 ) 5x^2\equiv -14 \pmod {6193} 5x2≡−14(mod6193);
【例3】(i)求 ( 5 p ) = 1 (\frac{5}{p})=1 (p5)=1的全体素数;(ii)求 ( − 5 p ) = 1 (\frac{-5}{p})=1 (p−5)=1的全体素数;
3.3 Jacobi符号和二次剩余问题
3.3.1 概念
设 m > 1 m>1 m>1为正奇数, m = ∏ i = 1 s p i m=\prod_{i=1}^sp_i m=∏i=1spi, p i p_i pi为素数, n n n为整数,定义 ( n m ) = ( n p 1 ) ( n p 2 ) ⋯ ( n p s ) (\frac{n}{m})=(\frac{n}{p_1})(\frac{n}{p_2})\cdots (\frac{n}{p_s}) (mn)=(p1n)(p2n)⋯(psn),把 ( n m ) (\frac{n}{m}) (mn)称为Jacobi符号
显然,当m为奇素数时, ( n m ) (\frac{n}{m}) (mn)就是Legendre符号
定理3.8:Jacobi符号有下列基本性质
- 若 n 1 ≡ n 2 ( m o d m ) n_1\equiv n_2\pmod m n1≡n2(modm),则 ( n 1 m ) = ( n 2 m ) (\frac{n_1}{m})=(\frac{n_2}{m}) (mn1)=(mn2)
- 若 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 ( n 2 m ) = ( n m 2 ) = 1 (\frac{n^2}{m})=(\frac{n}{m^2})=1 (mn2)=(m2n)=1
- ( 1 m ) = 1 (\frac{1}{m})=1 (m1)=1;若 ( m , n ) ≠ 1 (m,n)\not =1 (m,n)=1;则 ( n m ) = 0 (\frac{n}{m})=0 (mn)=0
- ( n 1 n 2 m ) = ( n 1 m ) ( n 2 m ) (\frac{n_1n_2}{m})=(\frac{n_1}{m})(\frac{n_2}{m}) (mn1n2)=(mn1)(mn2)
定理3.9:设 m > 1 m>1 m>1为奇数,则 ( − 1 m ) = ( − 1 ) m − 1 2 (\frac{-1}{m})=(-1)^{\frac{m-1}{2}} (m−1)=(−1)2m−1
定理3.10:设 m > 1 m>1 m>1为奇数,则 ( 2 m ) = ( − 1 ) m 2 − 1 8 (\frac{2}{m})=(-1)^{\frac{m^2-1}{8}} (m2)=(−1)8m2−1
定理3.11:设 m , n > 1 m,n>1 m,n>1为奇数,且 ( m , n ) = 1 (m,n)=1 (m,n)=1则 ( n m ) ( m n ) = ( − 1 ) m − 1 2 ⋅ n − 1 2 (\frac{n}{m})(\frac{m}{n})=(-1)^{\frac{m-1}{2}\cdot\frac{n-1}{2}} (mn)(nm)=(−1)2m−1⋅2n−1
定义 Q n = { a ∣ ( a , n ) = 1 , a Q_n=\{a|(a,n)=1,a Qn={a∣(a,n)=1,a是模n的二次剩余 } \} }, Z n 1 = { a ∣ ( a n ) = 1 } \mathbb{Z}_n^1=\{a|(\frac{a}{n})=1\} Zn1={a∣(na)=1},则有 Q n ⊂ Z n 1 Q_n\subset \mathbb{Z}_n^1 Qn⊂Zn1。集合 Q ˜ n = Z n 1 − Q n \~{Q}_n=\mathbb{Z}_n^1-Q_n Q˜n=Zn1−Qn中的数称为模n的伪二次剩余
定理3.12:若 n = p q n=pq n=pq,且n的素因子p和q已知,则整数a为模n的二次剩余,当且仅当 ( a p ) = ( a q ) = 1 (\frac{a}{p})=(\frac{a}{q})=1 (pa)=(qa)=1
定理3.13:给定 x , y ∈ Z n ∗ x,y\in \mathbb{Z}^*_n x,y∈Zn∗,若 x 2 ≡ y 2 ( m o d n ) x^2\equiv y^2\pmod n x2≡y2(modn), x ≢ ± y ( m o d n ) x\not \equiv \pm y\pmod n x≡±y(modn),可知n与 x ± y x\pm y x±y的最大公因子一定是n的素因子,而计算最大公因子是一个多项式时间算法
定理3.14:若已知 n = p q n=pq n=pq的因子分解,则存在一个计算复杂度为 O ( l g 3 ( n ) ) O(lg^3(n)) O(lg3(n))的多项式时间算法判断任一 a ∈ Z n 1 a\in \mathbb{Z_n^1} a∈Zn1是否为模n的二次剩余
3.3.2 习题
四、连分数
4.1 简单连分数
4.1.1 概念
设 a 0 , a 1 , ⋯ , a n , ⋯ a_0,a_1,\cdots,a_n,\cdots a0,a1,⋯,an,⋯是一个无穷实数序列,其中 a j > 0 , j ≥ 1 a_j>0,j\ge 1 aj>0,j≥1,n为非负整数。分数 a 0 + 1 a 1 + 1 a 2 + 1 ⋱ + 1 a n a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\ddots+\frac{1}{a_n}}}} a0+a1+a2+⋱+an1111称为有限连分数,如果 a 0 a_0 a0为整数, a 1 , ⋯ , a n a_1,\cdots,a_n a1,⋯,an为正整数,则称为有限简单连分数。当 n ⟶ ∞ n\longrightarrow \infty n⟶∞时,则分别称为连分数或简单连分数
上式通常记为 [ a 0 , a 1 , a 2 , ⋯ , a n ] [a_0,a_1,a_2,\cdots,a_n] [a0,a1,a2,⋯,an],当 n ⟶ ∞ n\longrightarrow \infty n⟶∞时又记为 [ a 0 , a 1 , ⋯ ] [a_0,a_1,\cdots] [a0,a1,⋯]
定理4.1:设 p k / q k p_k/q_k pk/qk是 [ a 0 , a 1 , ⋯ , a n ] [a_0,a_1,\cdots,a_n] [a0,a1,⋯,an]的第k个渐进分数,则有
- p 0 = a 0 , p 1 = a 1 a 0 + 1 , p k = a k p k − 1 + p k − 2 ( 2 ≤ k ≤ n ) p_0=a_0,p_1=a_1a_0+1,p_k=a_kp_{k-1}+p_{k-2}(2\le k\le n) p0=a0,p1=a1a0+1,pk=akpk−1+pk−2(2≤k≤n)
- q 0 = 1 , q 1 = a 1 , q k = a k q k − 1 + q k − 2 ( 2 ≤ k ≤ n ) q_0=1,q_1=a_1,q_k=a_kq_{k-1}+q_{k-2}(2\le k\le n) q0=1,q1=a1,qk=akqk−1+qk−2(2≤k≤n)
定理4.2: p k p_k pk与 q k q_k qk如定理4.1,则 p k q k − p k − 1 q k − 1 = ( − 1 ) k − 1 q k q k − 1 ( k ≥ 1 ) \frac{p_k}{q_k}-\frac{p_{k-1}}{q_{k-1}}=\frac{(-1)^{k-1}}{q_kq_{k-1}}(k\ge 1) qkpk−qk−1pk−1=qkqk−1(−1)k−1(k≥1); p k q k − p k − 2 q k − 2 = ( − 1 ) k a k q k q k − 2 ( k ≥ 2 ) \frac{p_k}{q_k}-\frac{p_{k-2}}{q_{k-2}}=\frac{(-1)^{k}a_k}{q_kq_{k-2}}(k\ge 2) qkpk−qk−2pk−2=qkqk−2(−1)kak(k≥2)
定理4.3:若 [ a 0 , a 1 , ⋯ ] [a_0,a_1,\cdots] [a0,a1,⋯]是简单连分数,则
- 当 n > 1 n>1 n>1,则 q n ≥ q n − 1 + 1 q_n\ge q_{n-1}+1 qn≥qn−1+1,从而 q n ≥ n q_n\ge n qn≥n
- p n / q n p_n/q_n pn/qn为既约分数
【例】将 233 112 \frac{233}{112} 112233表示为有限简单连分数
解: 233 112 = [ 2 , 112 9 ] = [ 2 , 12 , 9 4 ] = [ 2 , 12 , 2 , 4 ] \frac{233}{112}=[2,\frac{112}{9}]=[2,12,\frac{9}{4}]=[2,12,2,4] 112233=[2,9112]=[2,12,49]=[2,12,2,4]
定理4.4:设 [ a 0 , a 1 , ⋯ , a n ] [a_0,a_1,\cdots,a_n] [a0,a1,⋯,an]和 [ b 0 , b 1 , ⋯ , b n ] [b_0,b_1,\cdots,b_n] [b0,b1,⋯,bn]是两个有限简单连分数,且 a n > 1 , b m > 1 a_n>1,b_m>1 an>1,bm>1,如果 [ a 0 , a 1 , ⋯ , a n ] [a_0,a_1,\cdots,a_n] [a0,a1,⋯,an]= [ b 0 , b 1 , ⋯ , b n ] [b_0,b_1,\cdots,b_n] [b0,b1,⋯,bn],则 m = n m=n m=n,且 a i = b i , i = 0 , 1 , ⋯ , n a_i=b_i,i=0,1,\cdots,n ai=bi,i=0,1,⋯,n
4.1.2 习题
【例1】求下列有限连分数的值:(1) [ − 2 , 1 , 2 3 , 1 , 1 2 , 3 ] [-2,1,\frac{2}{3},1,\frac{1}{2},3] [−2,1,32,1,21,3];(2) [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] [1,1,1,1,1,1,1] [1,1,1,1,1,1,1]
【例2】将下列有理数表示成有限简单连分数:(1) 9 19 \frac{9}{19} 199;(2) 13 73 \frac{13}{73} 7313;(1) 395 287 \frac{395}{287} 287395;
4.2 用连分数表示实数
4.2.1 概念
定理4.5:设 α \alpha α是任一实数,则
- 若 α \alpha α是有理数,则存在正整数N,使得 α = [ a 0 , a 1 , ⋯ , a N ] \alpha=[a_0,a_1,\cdots,a_N] α=[a0,a1,⋯,aN],即 α \alpha α为有限简单连分数
- 若 α \alpha α是无理数,则对任意正整数n,有 α − p n q n = ( − 1 ) n δ n q n q n + 1 \alpha-\frac{p_n}{q_n}=\frac{(-1)^n\delta_n}{q_nq_{n+1}} α−qnpn=qnqn+1(−1)nδn, 0 < δ < 1 0<\delta<1 0<δ<1
定理4.6:若 α \alpha α为任一实数,则 α = l i m n ⟶ ∞ p n q n = [ a 0 , a 1 , ⋯ , a n , ⋯ ] \alpha=lim_{n\longrightarrow \infty}\frac{p_n}{q_n}=[a_0,a_1,\cdots,a_n,\cdots] α=limn⟶∞qnpn=[a0,a1,⋯,an,⋯]
4.2.2 习题
【例1】将下列实数表示成简单连分数:(1) 3 \sqrt{3} 3;(2) 2 + 5 2+\sqrt{5} 2+5;(3) 7 + 2 7+\sqrt{2} 7+2;
4.3 连分数因子分解算法
4.3.1 概念
设N是一个正整数(大整数),假如能够找到两个整数A和B,使得 A 2 ≡ B 2 ( m o d N ) A^2\equiv B^2 \pmod N A2≡B2(modN),那么, N ∣ ( A + B ) ( A − B ) N|(A+B)(A-B) N∣(A+B)(A−B)。如果 N ∤ A + B N\not | A+B N∣A+B, N ∤ A − B N\not | A-B N∣A−B,则 ( A + B , N ) (A+B,N) (A+B,N)就是N的真因子,从而能够分解N。
定理4.7:当 n ≥ 0 n\ge 0 n≥0时,存在正整数 Q n Q_n Qn,使 0 < Q n < 2 N 0<Q_n<2\sqrt{N} 0<Qn<2N,且 p 2 ≡ ( − 1 ) n − 1 Q n ( m o d N ) p^2\equiv (-1)^{n-1}Q_n\pmod N p2≡(−1)n−1Qn(modN)
4.3.2 习题
【例1】试用连分数的方法分解13561