- 博客(26)
- 收藏
- 关注
原创 计数组合学7.20(平面分拆与RSK算法)
实际上,一个反半标准杨表(reverse SSYT)就是一种特殊的平面分拆(移除了无关的0),事实上,在我们定义反半标准杨表时,我们提到了另一个术语“列严格平面分拆”。本节和接下来的两节将致力于讨论整数分拆的一个引人入胜的推广,称为“平面分拆”。我们将基于 RSK 算法以及一种将一对同形状的反半标准杨表合并成单个平面分拆的简单方法,给出一个优雅的双射证明。当我们考虑 RSK 算法的对称性结果定理 7.13.1 时,定理 7.20.1 的一个很好的变体就出现了。的每一列都是互异奇数部分的分拆。
2025-08-22 13:44:40
577
原创 计数组合学7.19(拟对称函数 )
我们已经成功地用四个基 mλ,hλ,eλm_\lambda, h_\lambda, e_\lambdamλ,hλ,eλ 和 pλp_\lambdapλ 展开了 Schur 函数 sλs_\lambdasλ。我们还给出了 sλs_\lambdasλ(在 nnn 个变量中)作为行列式商的公式。sλs_\lambdasλ 有另一种表达式,它具有许多组合含义。我们将把 sλs_\lambdasλ 写在一个基下,这个基不属于空间 Λ\LambdaΛ,而属于一个更大的空间 QQQ。如在 3.15 节中讨
2025-08-21 14:50:17
556
原创 计数组合学7.18(对称群的特征标 )
本节内容对于本书的其余部分并非必需(除少数次要例外),并假定读者具备有限群表示论的基础知识。我们的目标是证明上一节中的函数 χλ\chi^\lambdaχλ(其中当 www 是 Sn\mathfrak{S}_nSn 中(轮换)类型为 μ\muμ 的元素时,χλ(μ)\chi^\lambda(\mu)χλ(μ) 解释为 χλ(w)\chi^\lambda(w)χλ(w))是 Sn\mathfrak{S}_nSn 的不可约特征标。令 CFn\text{CF}^nCFn 表示所有类函数(即在共轭类上取常值的函
2025-08-13 11:54:18
474
原创 计数组合学7.17(Murnaghan–Nakayama 规则 )
是连通的,如果其分拆图(视为实心方块的并集)的内部是一个连通(开)集。因此,命题 7.17.6 正是不可约特征标满足的标准正交关系。如果它有两个相等的项,那么它对 (7.74) 没有贡献。边缘条的一个例子是 86554/5443,其分拆图是。(为了清晰起见,已画出边缘条的轮廓。下面的结果展示了边缘条与对称函数之间的联系。特征标之间联系的更多信息,请参见下一节以及本章的许多练习。的每个(常)表示等价于一个实表示。中出现的(非空)边缘条。的大小为 3 的边缘条如图 7.4 所示。用幂和表示出来是容易的。
2025-08-09 12:43:12
1000
原创 计数组合学7.16(Jacobi–Trudi 恒等式 )
我们的第一个证明将直接应用定理 2.7.1,该定理通过构造一个对合消去所有不需要的项来组合计算行列式。我们将此公式推迟到推论 7.21.6 和方程 (7.114),那里将给出两个计算量更少的证明。尽管可直接证明推论 7.16.3,但我们的证明表明它仅是 Jacobi–Trudi 恒等式的特化。时, (7.72) 中的行列式可显式计算(例如通过归纳法及巧妙的行列运算),从而给出。尽管我们的第一个证明是非常优雅的组合论证,但给出纯代数证明也是有价值的。的角色后)变为方程 (7.69) 的右边。
2025-08-08 13:33:43
598
原创 计数组合学7.15(Schur 函数的经典定义 )
设 α=(α1,…,αn)∈Nn\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^nα=(α1,…,αn)∈Nn 且 w∈Snw \in \mathfrak{S}_nw∈Sn。照常记 xα=x1α1⋯xnαnx^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}xα=x1α1⋯xnαn,并定义w(xα)=x1αw(1)⋯xnαw(n).w(x^\alpha) = x_1^{\alpha_{w(1)
2025-08-07 20:24:21
1501
原创 计数组合学7.14(对偶 RSK 算法)
正如我们从普通 RSK 算法得到 Cauchy 恒等式 (7.44) 一样,我们有以下结果,称为。(特别地,对于置换矩阵,RSK 和 RSK* 是一致的。对偶 RSK 算法的执行过程与 RSK 算法完全相同,区别在于元素。定理 7.14.2 的证明类似于定理 7.11.5 的证明,故省略。这个事实也是定理 7.14.5 的直接推论。存在 RSK 算法的一种变体,其与乘积。的自共轭分拆的数量。的关系类似于 RSK 算法本身与。由对偶 RSK 算法得到的数组。的每一行都是严格递增的。是线性无关的,我们得到。
2025-08-06 19:40:18
637
原创 计数组合学7.13(RSK 算法的对称性)
RSK 算法具有许多显著的对称性质。在本节中,我们将只讨论其中最重要的一个性质。设 AAA 是一个有限支撑的 N\mathbb{N}N 矩阵,并设 A⟶RSK(P,Q)A \overset{\text{RSK}}{\longrightarrow} (P, Q)A⟶RSK(P,Q)。则 At⟶RSK(Q,P)A^t \overset{\text{RSK}}{\longrightarrow} (Q, P)At⟶RSK(Q,P),其中 t{}^tt 表示转置。为准备该定理的证明,令 wA=(uv)w_{A}=
2025-08-05 18:56:48
1083
原创 计数组合学7.12( RSK算法的一些推论)
注意,一般来说,如果存在整标准正交基,那么它在符号和顺序意义下是唯一的。这是因为两个这样的基之间的转换矩阵必须既是整的又是正交的。容易看出,唯一的整正交矩阵是带符号的置换矩阵。一般来说,一个具有特定基(在我们的情形是单项对称函数)和正定对称标量积的向量空间是否具有整标准正交基是一个微妙的问题。最后我们给出一个已经在 (7.43) 中给出的恒等式,但值得在这里重复。通过RSK算法直接得出的关于对称函数的最重要结果如下,称为柯西恒等式。我们给出这个推论的三个证明,本质上都是等价的。的半标准杨表(SSYT)对。
2025-08-03 11:19:40
964
原创 计数组合学7.11(RSK算法)
当然,这些结果也可以通过纯代数方法证明,但在枚举组合学的教材中,我们更倾向于组合证明。的结果如下所示,其中每一行中被插入的元素(通过挤入或最终插入到第四行)用粗体表示。因此,4 挤出了 5,5 挤出了 6,6 挤出了 8,而 8 被插入到某一行的末尾。在7.13节中,我们将给出RSK算法的另一种“几何”描述,这对于证明一些显著性质非常有用。继续这一过程,直到某个元素被插入到某一行的末尾(可能是新行的第一个元素)。的插入路径的底部之下。由此可见,两个插入路径的底部元素位于不同的列中,因此。
2025-08-02 22:53:00
1026
原创 计数组合学7.10(舒尔函数的组合定义)
前几节讨论的四个基mλmλeλeλhλhλ和pλpλ的定义都较为直观。本节将介绍第五个基,其元素记为sλsλ,称为舒尔函数,其定义则更为微妙。实际上,舒尔函数有许多不同的(等价的)定义方式,例如可以通过前述四个基中的任意一个来定义,或通过涉及行列式商的“经典”定义,或通过与正交性和三角化相关的抽象性质,又或通过更高级的代数方法。对于初学者而言,这些定义可能都显得缺乏动机。我们选择通过mλmλ来定义sλsλ。
2025-08-01 22:03:39
1401
原创 计数组合学7.9( 标量积)
(作为阿贝尔群)的基。在第 7.10–7.17 节中,我们将构造这样的基(参见推论 7.12.2),并推导其许多显著的组合性质。以下引理是验证某类对称函数正交性的基本工具,其证明是线性代数的直接练习,省略不影响理解。此定义的动机将在后续性质的发展中逐渐明晰。是否存在整数标准正交基,即是否存在标准正交基。上线性无关,结合 (7.33) 即得证。(它们不构成标准正交基,因为。是否存在“自然”的标准正交基?是对偶基,这等价于 (7.34)。的整数线性组合,且反之每个。:由标量积的双线性性,只需取。
2025-07-31 17:35:23
690
原创 计数组合学7.8(特殊化)
在许多涉及对称函数 fff 的组合问题中,我们仅需要关于 fff 的部分信息,例如特定系数或值。本节简要概述实践中出现的最常见特殊化。(其他三种特殊化参见习题 43 和 44,以及第 7 章补充习题 88。)证明大多直接,故省略。首先让我们给出特殊化概念的正式定义。7.8.1 定义 设 RRR 是一个具有幺元的交换 Q\mathbb{Q}Q-代数。环 Λ\LambdaΛ 的一个 特殊化 是一个同态 φ:Λ→R\varphi:\Lambda\to Rφ:Λ→R。(我们总假设同态是保幺的,即 φ(1)=1\v
2025-07-30 10:59:37
705
原创 计数组合学7.7(幂和对称函数)
(7.20) 的第二个等式是指数公式的置换版本(推论 5.1.9)的推论(实际上等价)。立得 (7.22)。类似地从 (7.21) 得到方程 (7.23),或通过对 (7.22) 应用。线性无关,在上述等式链的第一个和最后一个求和中它们的系数必须相同。的自共轭分拆的数目。(即包含在交错群中的共轭类)的数目。)这一事实,可通过类似于定理 7.4.4 证明中的推理得出。)是具有偶数个(分别地,奇数个)偶数部分的分拆的个数。的一个有序分拆,反之每个这样的有序分拆产生一项。的一个满足 (7.15) 的有序分拆。
2025-07-29 11:14:14
919
原创 计数组合学7.6(对合)
表达的集合与多重集互反性的代数精炼。证明现由定理 7.4.4 可得。现对 (7.13) 应用。如第 7.5 节所示,对合。:定理 7.6.1 表明由。(恒等自同构),或等价地。保持乘法)对所有分拆。
2025-07-28 10:50:59
876
原创 计数组合学7.5(完全齐次对称函数)
这种对偶性的根本原因将由定理 7.6.1 及后续的各种发展阐明。现在让我们考虑命题 7.4.1 的“完全类似物”。-矩阵体现,或者等价地,通过不允许重复或允许重复(受某些条件限制)的球放入盒子体现。之间的互反关系,或者更一般的第 4.5 章和第 4.6 章的互反定理。证明类似于命题 7.4.3 的证明,故省略。的线性无关性将是定理 7.6.1 的一个平凡推论,因此我们将其“正式”陈述留到那时。:完全类似于推论 7.4.2 的证明。:类似于命题 7.4.1 的证明。之间的转移矩阵是对称矩阵。
2025-07-27 19:53:08
1072
原创 计数组合学7.4(初等对称函数)
我们考虑的生成函数以及稍后将讨论的一个密切相关形式(见命题 7.5.3)在对称函数理论中扮演重要角色。是将球放入盒子中满足以下条件的方案数:(a) 同一标号的球在任一盒子中不超过一个,(b) 盒子。通常有简单的组合或代数解释(代数解释的例子可以是向量空间的维数)。现在我们给出一个称为“对称函数基本定理”的基础结果,尽管对我们而言它仅触及该主题的表面。-正的,而命题 7.4.1 给出了更强的结果(即系数的组合解释)。的优雅组合解释是对称函数理论组合效力的初步体现。的一个与控制序相容的排序。
2025-07-26 11:01:14
831
原创 计数组合学7.2(分拆及其序关系)
另一方面,在控制序中,分拆 33 和 411,以及 3111 和 222 是不可比较的。上,只需取与控制序相容的任何线性序(即控制序的一个线性延拓)即可。为方便读者,我们陈述以下关于控制序的基本事实,尽管我们在此处不需要它们。我们想回顾另一个与分拆相关的定义。即,在第 1.8 节中,我们将分拆。的 Möbius 函数见习题 3.136,更多性质见本章习题 2。的 Durfee 方块的边长(定义见第 1.8 节)。的分量的个数,因此在第 1.7 节的记法中我们有。对于我们的最后一个偏序,同样定义在。
2025-07-24 10:53:39
1263
原创 计数组合学7.1(一般的对称函数)
本文及后续笔记为Enumerative Combinatorics,Richard P. Stanley 计数组合学的个人翻译笔记。
2025-07-23 11:22:48
803
原创 计数组合学1.4(十二模式)
映射限制类型对于有限集合NNN∣N∣n|N|=n∣N∣n)和XXX∣X∣x|X|=x∣X∣x)之间的映射fN→Xf:N\to XfN→X无限制映射:任意函数单射:满足fa≠fbfafb(当a≠ba\neq bab满射:满足ImfXImfX可区分性等价关系N不可区分等价:存在π∈SN\pi\in S_Nπ∈SN使得f∘πgf∘πgX不可区分等价:存在σ∈SXσ∈。
2025-07-22 12:42:33
730
原创 计数组合学1.3.3(重集排列)
7个分拆:5,4+1,3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1。其中(\alpha_i)表示部分i出现的次数,零项可省略。:左对齐点阵,第i行(\lambda_i)个点。与多重线性序的双射,保持逆序数生成函数。-多项式系数的递推关系与初始条件。-模拟结果退化为经典组合公式。
2025-07-21 10:54:12
692
原创 计数组合学1.3.1(圈结构)
排列与双射:将集合SSS的排列π\piπ视为一个双射πS→SπS→S。圈(Cycle):对于排列π\piπ和元素z∈Sz \in Sz∈S,序列zπzπ2zzπzπ2z称为zzz的一个圈。圈的长度是回到起始元素的最小正整数ℓ\ellℓ,即(\pi^\ell(x)=x)。不相交圈分解:每个排列可以表示为若干不相交的圈的并,例如π1423756π1423756。标准表示每个圈中最大元素放在首位。圈按最大元素从小到大排列。
2025-07-19 20:22:57
1101
原创 计数组合学1.2(集合与重集)
是一个双射,因此我们证明了。中元素进行线性排序的方法数。表示为有序正整数之和。的所有子集构成的集合。元子集构成的集族,并定义。有两种可能的取值,所以。,则转化为正整数解的问题。
2025-07-18 17:38:11
964
原创 计数组合学1.1(如何计数)
计数组合学的核心问题是计算有限集合的元素个数。:构造显式双射 (不好找组合对象,双射也难以想到):最理想形式,仅含基本函数且无求和符号。,目标是统一计数每个有限集。:复杂显式公式的近似计算。
2025-07-17 23:51:31
789
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人