空间转录组技术正在广泛应用,然而目前一些转录组的空间分析还达不到单细胞的分辨率水平。为了达到将基因表达置于空间环境中并划定组织内细胞类型空间分布的目的,来自瑞典的科研团队提出一种基于模型的概率方法:stereoscope,使用单细胞数据来解析空间数据中的细胞混合物。
stereoscope是什么?
该模型框架利用单细胞数据推断空间数据中每个捕获位置的每个细胞类型的比例估计,从而消除了对空间数据分析时对要素或簇等抽象实体的任何解释或注释的必要性。
stereoscope概述:首先使用单细胞数据来描述每个细胞类型的表达谱,然后在每个捕获位置内找到这些类型的组合,以最好地解释空间数据。
研究团队已经在代码中实现了这个方法,并将其作为一个名为stereoscope的开源python包发布,它可执行去卷积过程并对细胞类型进行空间映射,该过程是无缝的,可通过多种技术转换,并且不需要对数据进行任何预处理。
stereoscope的评价及应用
/ 技术评价 /
为了证明stereoscope的实用性,研究团队使用来自不同实验平台的数据,并对来自小鼠大脑和发育期心脏的细胞类型进行了空间映射,其排列方式与预期一致。