卢卡斯定理:
若p是质数,则对于任意吗1<=m<=n,有:
C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p。(可以递归)
也就是把n和m表示成p进制数,对p进制的下一为分别计算组合数,最后乘起来。
其递归方程为:
(C(n%p, m%p)*Lucas(n/p, m/p))%p。(递归出口为m==0,return 1)
Lucas定理用来解决大组合数求模是很有用的。
注意:Lucas定理最大的数据处理能力是p在10^5左右,不能再大了。再大的话,我就不知道了。。。
例题
给出C(n,m),表示从n个元素中选出m个元素的方案数,例如C(5,2)=10。可是当C(n,m)中n,m比较大的时候结果会很大,于是希望你输出C(n,m)%p的值。
输入:n,m,p
输出:C(n,m)%p的值。
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#define ll long long
using namespace std;
ll n,m,p;
ll KSM(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1) s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
ll c(ll n,ll m)
{
if(m>n) return 0;
int a=1,b=1;
for(ll i=n-m+1;i<=n;i++)
a=a*i%p;
for(ll i=2;i<=m;i++)
b=b*i%p;
return a*KSM(b,p-2)%p;
}
ll lucas(ll n,ll m)
{
int i,j;
if(!m) return 1;
else
return (c(n%p,m%p)*lucas(n/p,m/p))%p;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m>>p;
cout<<lucas(n,m)<<endl;
}
return 0;
}
这个的话,就直接做模板得了,哈哈~~
还有一个古代猪文(poj1951)以后也弄上