lucas定理及其模板样例

卢卡斯定理:

若p是质数,则对于任意吗1<=m<=n,有:

                                      C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p。(可以递归)

                    也就是把n和m表示成p进制数,对p进制的下一为分别计算组合数,最后乘起来。

其递归方程为:

                                      (C(n%p, m%p)*Lucas(n/p, m/p))%p。(递归出口为m==0,return 1)

Lucas定理用来解决大组合数求模是很有用的。

注意:Lucas定理最大的数据处理能力是p在10^5左右,不能再大了。再大的话,我就不知道了。。。

 

例题

给出C(n,m),表示从n个元素中选出m个元素的方案数,例如C(5,2)=10。可是当C(n,m)中n,m比较大的时候结果会很大,于是希望你输出C(n,m)%p的值。

输入:n,m,p

输出:C(n,m)%p的值。

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#define ll long long
using namespace std;

ll n,m,p;
ll KSM(ll a,ll b)
{
    ll s=1;
    while(b)
    {
        if(b&1) s=s*a%p;
        a=a*a%p;
        b>>=1;
    }
    return s;
}

ll c(ll n,ll m)
{
    if(m>n) return 0;
    int a=1,b=1;
    for(ll i=n-m+1;i<=n;i++)
        a=a*i%p;
    for(ll i=2;i<=m;i++)
        b=b*i%p;
    return a*KSM(b,p-2)%p;
}

ll lucas(ll n,ll m)
{
    int i,j;
    if(!m) return 1;
    else
        return (c(n%p,m%p)*lucas(n/p,m/p))%p;
}

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        cin>>n>>m>>p;
        cout<<lucas(n,m)<<endl;
    }
    return 0;
}

这个的话,就直接做模板得了,哈哈~~

还有一个古代猪文(poj1951)以后也弄上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值