从 OLAP 到 Pandas

Pandas 和 OLAP(如 Mondrian、MDX都用于处理结构化数据,但设计目标和抽象层级不同

一、核心概念对比

OLAP/Mondrian/MDX

Pandas

说明

多维数据集(Cube)

DataFrame

两者都是结构化数据容器,但 DataFrame 是二维表格,多维分析需通过分组 / 透视实现。

维度(Dimension)

索引(Index)或列(Column)

维度用于切片和切块,Pandas 中可通过索引层级或列实现类似功能。

层次结构(Hierarchy)

多级索引(MultiIndex)

两者都支持数据的层次化组织。

MDX 查询(SELECT FROM CUBE)

DataFrame 操作(.query()[]

MDX 通过维度导航数据,Pandas 通过标签或条件过滤数据。

切片(Slice)/ 切块(Dice)

索引筛选(loc/iloc

从多维数据中提取子集的操作类似。

钻取(Drill Down)/ 上卷(Roll Up)

groupby() + 聚合函数

改变分析粒度的操作在 Pandas 中通过分组和聚合实现。

二、基础操作对照

1. 数据结构创建
  1. MDX:从 Cube 中查询数据

SELECT 

  {[Measures].[Sales], [Measures].[Profit]} ON COLUMNS,

  {[Time].[Year].[2023], [Time].[Year].[2024]} ON ROWS

FROM [SalesCube]

  1. Pandas:创建 DataFrame

import pandas as pd

data = {

    'Year': [2023, 2023, 2024, 2024],

    'Product': ['A', 'B', 'A', 'B'],

    'Sales': [100, 200, 150, 250],

    'Profit': [20, 40, 30, 50]

}

df = pd.DataFrame(data)

2. 数据筛选(切片)
  1. MDX:筛选 2023 年的数据

SELECT 

  {[Measures].[Sales]} ON COLUMNS,

  [Product].Members ON ROWS

FROM [SalesCube]

WHERE [Time].[Year].[2023]

  1. Pandas:筛选 2023 年的数据

df_2023 = df[df['Year'] == 2023]

3. 数据聚合
  1. MDX:按产品汇总销售额

SELECT 

  {[Measures].[Sales]} ON COLUMNS,

  [Product].Members ON ROWS

FROM [SalesCube]

  1. Pandas:按产品分组求和

df.groupby('Product')['Sales'].sum()

4. 多维分析(透视)
  1. MDX:按年和产品交叉分析销售额

SELECT 

  {[Measures].[Sales]} ON COLUMNS,

  [Product].Members ON ROWS,

  [Time].[Year].Members ON PAGES

FROM [SalesCube]

  1. Pandas:使用pivot_tablecrosstab

pd.pivot_table(df, values='Sales', index='Product', columns='Year', aggfunc='sum')

三、进阶功能对比

1. 计算成员(Calculated Member)
  1. MDX:计算利润率

WITH MEMBER [Measures].[ProfitRate] AS

  [Measures].[Profit] / [Measures].[Sales]

SELECT 

  {[Measures].[Sales], [Measures].[Profit], [Measures].[ProfitRate]} ON COLUMNS,

  [Product].Members ON ROWS

FROM [SalesCube]

  1. Pandas:新增计算列

df['ProfitRate'] = df['Profit'] / df['Sales']

2. 时间智能函数
  1. MDX:同比增长

WITH MEMBER [Measures].[YoY_Sales] AS

  ([Measures].[Sales] - ([Time].[Year].CurrentMember.PrevMember, [Measures].[Sales])) 

  / ([Time].[Year].CurrentMember.PrevMember, [Measures].[Sales])

SELECT 

  {[Measures].[Sales], [Measures].[YoY_Sales]} ON COLUMNS,

  [Time].[Year].Members ON ROWS

FROM [SalesCube]

  1. Pandas:使用shift()计算同比

df['YoY_Sales'] = df['Sales'].pct_change()

3. 层次结构处理
  1. MDX:按时间层次(年→季度→月)钻取

SELECT 

  {[Measures].[Sales]} ON COLUMNS,

  [Time].[Calendar].Children ON ROWS

FROM [SalesCube]

WHERE [Time].[Year].[2023]

  1. Pandas:使用多级索引

df_hier = df.set_index(['Year', 'Product'])

df_hier.loc[2023]  # 相当于MDX的切片操作

四、性能与适用场景

场景

OLAP/Mondrian/MDX

Pandas

大数据量(亿级行)

✅ 预计算和聚合优化

❌ 内存限制,需配合 Dask 等工具

即席查询

✅ MDX 灵活表达多维分析

❌ 需编写较多代码

复杂报表

✅ 原生支持维度导航

❌ 需手动实现透视和聚合

数据清洗与转换

❌ 功能有限

✅ 强大的 ETL 能力

机器学习集成

❌ 需导出数据到外部工具

✅ 直接对接 Scikit-learn 等库

五、关键差异总结

  1. 数据模型
    1. OLAP 是显式多维模型,数据预先组织为 Cube。
    2. Pandas 是二维表格 + 灵活索引,多维分析需通过编程实现。
  2. 查询方式
    1. MDX 是声明式语言,专注于 “查询什么”。
    2. Pandas 是命令式编程,需指定 “如何查询”。
  3. 性能优化
    1. OLAP 通过预计算(如聚合表)和索引优化。
    2. Pandas 依赖内存计算和向量化操作。

我熟悉 Mondrian 和 MDX 的强大多维分析能力,感觉Pandas 在表达复杂分析时显得冗长,但它在数据清洗、机器学习集成和灵活性上具有优势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值