咱们结合这张图,用 “选水果” 的例子,bb装袋(Bagging)的过程:
1. 数据集 D:“水果仓库”
假设图里的 “数据集 D” 是一个大仓库,里面有 100 个水果(有苹果、梨、桃子等),每个水果都标好了 “是不是苹果” 的标签。
2. 抽子集 D₁、D₂…Dₖ:“多次随机抽水果”
装袋的第一步,是从这个仓库里 **“有放回地” 抽水果 **:
- 第一次抽 100 个(比如抽到 50 个苹果、30 个梨、20 个桃子),组成子集 D₁;
- 第二次再抽 100 个(可能又抽到 40 个苹果、40 个梨、20 个桃子),组成子集 D₂;
- 重复 k 次,得到 k 个子集(比如 k=5,就有 D₁到 D₅五份不同的水果样本)。
注意:“有放回” 意味着同一个水果可能被多次抽到,这样每个子集的水果分布会略有不同,让后面的模型学出不同的规律。
3. 训练模型 M₁、M₂…Mₖ:“5 个评委各自学习”
把每个子集 D₁到 D₅,分别交给 5 个 “评委”(模型 M₁到 M₅)学习:
- M₁用 D₁学:比如它学到 “红的、圆的、重 150g 左右是苹果”;
- M₂用 D₂学:它可能学到 “红的、甜的、产自山东是苹果”;
- ……
- M₅用 D₅学:它可能学到 “圆的、甜的、带果柄是苹果”。
每个模型都只看自己子集里的水果,独立学习,互不干扰。
4. 新数据:“来了个新水果”
比如仓库里新来了一个水果(红、圆、重 150g、产自山东、甜、带果柄),需要判断它是不是苹果。
5. 模型投票:“5 个评委各说各的”
把这个新水果交给 5 个模型(评委)分别判断:
- M₁看了说:“红、圆、重 150g,是苹果!”
- M₂看了说:“红、甜、产自山东,是苹果!”
- ……
- M₅看了说:“圆、甜、带果柄,是苹果!”
6. 投票→分类结果:“少数服从多数”
5 个评委都判定是苹果,最终结果就会输出 “这个水果是苹果”。如果有 3 个说 “是”,2 个说 “不是”,也按多数票判定为 “是苹果”。
装袋的核心逻辑(对应图中箭头):
- 虚线箭头(D→D₁/D₂…):表示从原数据集中有放回地抽取子集;
- 实线箭头(D₁→M₁,D₂→M₂…):表示用每个子集训练对应的模型;
- 模型到 “投票” 的箭头:表示每个模型对新数据的判断结果被汇总;
- “投票” 到 “分类结果” 的箭头:表示最终按多数票决定结果。
装袋:
“多次随机抽数据,每个数据子集训练一个模型,最后所有模型投票,少数服从多数。”
这样做的好处是:单个模型容易 “看走眼”(比如 M₁可能把红西红柿当苹果),但多个模型一起投票,错误会相互抵消,结果更稳定、更准确~