简介
pgvector:在 Postgres 中存储和查询向量。您可以将向量数据与其他数据一起存储在 Postgres 中,并进行向量相似性搜索,同时仍然可以利用 Postgres 提供的所有强大功能。
pgvector 扩展与 Postgres 无缝集成 - 允许用户在现有数据库基础设施中利用其功能。通过将向量化处理的能力整合到PostgreSQL中,pgvector允许用户直接在数据库中进行大规模的相似性搜索、机器学习模型预测等多种操作,因为不需要单独的数据存储或复杂的数据传输过程。
核心功能
1.向量存储:
-
pgvector使用高效的二进制编码(如Faiss的IVF索引)来存储和检索高维向量,大大降低了存储空间需求,并提高了查询速度。
- 支持多种向量类型,包括单精度(Single-precision)、半精度(Half-precision)、二进制(Binary)和稀疏向量(Sparse Vectors),以满足不同场景的需求。
2.相似性搜索:
- 支持多种相似性度量标准,如L2距离(L2 Distance)、内积(Inner Product)、余弦距离(Cosine Distance)、L1距离(L1 Distance),以便用户根据实际需求选择合适的搜索方法。
- 提供HNSW和IVFFlat等索引策略,以优化查询性能。
3.集成SQL支持:
-
与标准PostgreSQL完全兼容,用户可以使用SQL语句来创建、查询和管理向量表,从而简化了开发流程。
-
提供了一系列内置函数,如余弦相似度计算等,便于在SQL查询中直接进行相似性比较。
4.扩展性与灵活性:
- 作为开源项目,pgvector允许开发者根据需要对其进行定制和扩展。
- 支持ACID事务、点时间恢复、JOIN操作以及PostgreSQL的所有其他优秀特性。
应用场景
pgvector适用于多种应用场景,包括但不限于:
-
推荐系统:通过在数据库内部计算用户行为向量的相似度,实时生成个性化推荐。
-
图像识别:存储和检索图像特