现场工程师培养背景下,高职人工智能技术应用专业人才培养方案

一、前言

作为推动科技革命与产业变革的核心驱动力,人工智能技术在高等教育领域的应用不断拓展且渗透力强劲,其影响范围与深度正日益扩大并持续加深。2017 年 7 月国务院发布的《新一代人工智能发展规划》中明确要求高校完善人工智能教育体系,设立人工智能专业,推进人工智能一级学科建设。2018 年 4 月教育部印发《高等学校人工智能创新行动计划》,再次着重强调要提升高校在人工智能领域的科技创新、人才培养以及服务国家需求的能力。为解决关键领域数字化、智能化人才稀缺问题,2022 年 9 月教育部办公厅联合其他四部门印发《关于实施职业教育现场工程师专项培养计划的通知》 ,该通知聚焦于紧密对接先进制造业、战略性新兴产业以及现代服务业等重点领域的高端化、数字化、智能化、绿色化发展需求,制定了 2025 年累计培养不少于 20 万名现场工程师的目标。

当下,产业结构正经历全面转型升级,数字化转型进程也在加速推进。在此背景下,深入探索并实践高职新一代信息技术专业现场工程师的培育路径,对于显著提升人才培养质量、深度推动教育与产业融合具有极为关键且意义深远的价值。针对智能制造型企业在数字化转型与升级关键阶段面临的数据治理难题,浙江金融职业学院与北京中软国际教育科技股份有限公司携手合作,从数据处理的典型工作场景与工作任务出发,校企共建数据处理现场工程师联合培养项目。本文依托该项目,结合数据处理现场工程师、人工智能专业相关岗位以及数智化背景下的职业素养要求,对职业教育人工智能技术应用专业的人才培养路径展开深入研究。

二、高职院校人工智能人才培养的现状与问题

人工智能(AI)作为计算机科学的重要分支,是一门理论基础完备、跨越多学科且应用领域广泛的前沿学科。随着信息技术产业的快速蓬勃发展,市场对于掌握人工智能技术的专业人才需求呈现出爆发式增长。这些人才不仅要具备扎实的理论基础,还需积累丰富的实践经验。为顺应这一趋势,众多高校积极行动,增设人工智能技术应用相关专业和课程。据《全国职业院校专业设置管理与公共信息服务平台》数据显示,2020 年有 173 所高等职业院校成功申报人工智能技术应用专业,2021 年至 2023 年间又分别新增 214 所、71 所、55 所。然而,作为新工科跨专业交叉学科的典型代表,我国高校人工智能专业开设时间较短,仍处于发展初期,尚未形成可供推广的人才培养模式。围绕该专业的教育教学改革与实践探索相对不足,在发展过程中面临着诸多亟待解决的挑战与难题。

(一)师资短缺与教学资源匮乏

教育领域当前面临的一大挑战在于理论教学与实际应用之间的显著差距,尤其是在人工智能教育方面,学校教育与企业需求之间存在明显的脱节。截至2023年,全国已有513所高等职业院校开设了人工智能技术应用专业,但随之而来的是师资和教育资源的瓶颈问题。首要难题是严重缺乏具有深厚理论基础和丰富实践经验的人工智能教师。现有师资远不能满足这一新兴学科的需求,限制了专业的规模化发展和教育质量的提升。许多教师虽有坚实的学术背景,但在实战经验上有所欠缺,导致教学内容在时效性和实用性上的不足。为解决这些问题,加强教师的实践技能培训、建立校企合作的师资交流平台显得尤为关键。

(二)行业发展速度与教育滞后性

信息技术行业,尤其是人工智能领域的快速发展与人才培养体系的滞后形成了鲜明对比。传统教育体系难以跟上信息技术快速迭代的步伐,使得企业在寻找能够应对复杂AI应用场景的技术人才时困难重重。部分高校过于侧重理论讲授而忽视实践能力培养,造成毕业生难以适应职场的实际需求。优化教育资源配置、强化产教融合以及提高师资队伍的实践指导能力,成为提高AI领域人才培养质量的关键。

(三)校企合作机制优化需求

在校企合作及学徒制教育模式中,构建高效的“双师型”教师团队是提升职业教育质量和推动教育变革的重点。然而,教师队伍建设滞后、企业实践时间有限、激励机制不完善等问题阻碍了教师技能的提升,削弱了教学内容与职场实践的紧密联系。企业导师虽然拥有丰富的实践经验,但在教育理论掌握和教学方法运用上存在不足,影响教学质量。此外,校企间人才互派和资源共享机制僵化,缺乏灵活的用人制度,进一步限制了“双师型”教师队伍的建设。要突破这些瓶颈,需要建立完善的激励机制、优化人才互派与资源共享机制,并加强教师的实践能力和教育理论培训,以促进校企双方更深层次的合作与交流。

三、现场工程师培养背景下,高职人工智能专业人才培养路径

(一)深化协同育人,搭建高效校企合作桥梁,实现工程师培养与产业精准对接

在现场工程师的培养进程中,构建校企协同育人机制是关键环节。需建立契合新型校企关系的治理模式,完善相关管理制度与运行机制。在推进现场工程师专项培养计划时,要整合学校、行业、政府及产业园区等多方优质资源,共同搭建一个高效协同的决策与教学指导体系,为项目的顺利推进与高效运作提供坚实保障。

该体系的核心在于设立校企双主体共管的现场工程师项目管理委员会。此委员会肩负着项目顶层设计、总体布局、统筹协调、重大事项决策、过程监控以及督促落实等重要职责,从战略层面确保项目方向正确,执行效率达到最优。

为保障项目管理的透明化与高效性,应成立项目规划工作组。该工作组负责制定并执行科学严谨的运营管理制度,明确资源整合的标准化流程,促进各参与方资源的深度融合与高效利用,为项目的持续健康发展筑牢根基。

在提升教学质量与人才培养针对性方面,设立教学指导和教学实施工作组。该工作组聚焦于人才培养方案的精细化设计,深入推进教学研究与改革,科学开发行业用人标准,严谨制定课程与教材标准,全面监控教学质量,完善构建师资培训体系,常态化开展教学研讨与信息交流。这一系列举措为现场工程师的培养提供了全方位的支撑与保障。

师资队伍建设是人才培养的核心。成立专门的师资建设工作组,致力于打造一支高水平、结构化的“双师型”教学团队。一方面,完善在职教师的专业发展机制,鼓励教师深入合作企业参与岗位实践和工程项目,提升教师的实践操作能力与“双师型”素质。另一方面,积极引进企业的行业精英、技术骨干等优秀人才加入教学团队,共同承担教学任务,指导实践教学,实现校企优势互补、深度融合。

通过构建多方参与、高效协同的决策与教学指导体系,签订详细的联合培养协议,以及打造高水平的“双师型”教学团队,为现场工程师专项培养计划的顺利实施提供有力支撑。

(二)契合行业需求,构建模块化课程体系,提升信息技术现场工程师实践能力

新一代信息技术现场工程师的培养,核心在于技术能力的提升,而技术能力的提升离不开丰富的实践锻炼。科学合理地设置实践课程体系,对于实现学校人才培养目标至关重要。

基于新一代信息技术产业的实际需求、校企深度合作框架以及现场工程师的角色定位,秉持培养学生创新能力的原则,结合“人工智能训练师”“计算机视觉开发工程师”等相关岗位,以及“人工智能数据处理”“计算机视觉应用开发”等 1 + X 证书,构建模块化课程。

以立德树人为根本,坚持德技并修,促进学生全面发展。主要面向人工智能行业的数据处理等岗位,以及人工智能相关企事业单位,培养掌握人工智能技术应用开发、系统管理与维护等专业技术知识和基础理论知识,能够从事人工智能等智能软件应用开发、测试以及技术支持、项目管理等工作,具备较强可持续发展能力的高素质技术技能人才。

按照“具备工匠精神,精操作、懂工艺、会管理、善协作、能创新”的育人理念,依托人工智能技术应用专业领域项目的环境搭建、数据标注、模型训练及模型部署四个环节,构建人工智能核心课程体系。设计包含 Python 语言程序开发、机器学习、深度学习、自然语言处理与知识图谱等核心课程的模块化课程体系,明确学习目标,全面提升学生的动手实践能力和复杂问题解决能力。

同时,将“精益求精,科技报国的智能时代新工匠”的课程思政育人目标贯穿教学体系全过程。结合各教学任务特点,融入遵纪守法、责任担当、协调合作等五个思政主题,实现课程思政的有机融入,培养德才兼备的新时代信息技术现场工程师。

(三)创新“岗课赛证”模式,双元双载体协同,定制化培育现场工程师

为达成更优质的教学目标,需积极探索“岗课赛证”融通育人新模式,构建校企“行业导师 + 专业教师”双元协同、“工作室 + 产学基地”双载体支撑的产教融合新机制。以现场工程师校企联合培养项目为依托,借助线上线下融合的教学平台,由行业导师与专业教师携手,为学生量身定制个性化人才培养方案。

构建以企业集中培训、岗位师带徒为核心的结构化教学组织形式,基于真实生产任务灵活开展教学,实现工学交替。在校内理论教学环节,充分利用数字化技术,采用课前预学、课中践学、课后拓学的“三段式”学习流程推进教学任务。例如,借助智慧教学课堂平台,运用大数据聚类算法开展精准学情分析,生成学生画像;基于前序课程,在教学平台对学生模型开发能力、人工智能知识掌握程度、学习主动性、创新素养、团队合作能力以及职业兴趣等多维度学情指标进行智能聚类分析,使教师能够在学生无感知状态下实施分层次教学,提升教学的精准性与针对性。

在校中实践教学方面,借鉴我校人工智能技术应用专业承办的中德先进职业教育新一代信息技术领域项目经验,对德国“双元制”教育体系中的“六阶段教学法”进行本土化改造。秉持职业导向的教育理念,紧密贴合职场岗位实际需求,优化教学内容与方法。课后,采用项目引领与任务驱动相结合的双重教学策略,促进学生实践能力的全面提升。

校外则推行现场岗位师带徒制度,从企业中选拔技能娴熟的员工担任带徒岗位工程师,带领学员参与实际生产任务,开展技能培训。让学员在实际工作经历中,及时掌握最新技能与技术动态。同时,基于真实生产任务灵活组织教学,将学习与实践深度融合,提高教学的实效性与针对性。

在教学过程中,注重理论知识与实践技能的有机结合,引导学员在理论与实践中相互转化,巩固和应用所学知识。此外,采用交互训教方式,鼓励学员之间相互交流学习,提升学习效果。

(四)凝聚校企行业合力,量化评价标准,全方位、多维度提升现场工程师培养品质

在推进现场工程师专项培养计划过程中,注重学生素养的全面养成与实践技能的深度培养,构建由学校、企业、行业共同参与的多元化评价主体体系。该体系不仅细化、量化现场工程师的培养标准,还精心设计多维度质量评价指标,确保评价的科学性、合理性与全面性。

通过融合校内学习成长、工学交替实践以及生态型企业实训实习等丰富经历,对学生实施全方位学习效果考核评价。这一评价过程由校内专任教师与企业导师紧密协作、共同负责,全面评估学生在专业课程学习中的掌握程度以及在企业岗位上的实际表现能力。通过校企联合评价,精准把握学生成长轨迹,及时调整和优化培养方案。

为进一步提升学生职业素养与技能水平,鼓励学生积极考取各类专业资格证书与职业技能等级证书,如“计算机技术与软件专业技术资格证书”,以及“数据开发应用与服务”“大数据应用开发(Python)”“计算机视觉应用开发”“人工智能数据处理”等 1 + X 职业技能等级证书。同时,与合作企业共同颁发实习经历证书,表彰学生在企业实训中的优异表现,增强学生就业竞争力。

在常规的过程评价和结果评价基础上,创新引入“智能工匠闯关升级”增值评价体系。该体系科学规划学生三年专业学习进程,设定一系列课程技能任务点,鼓励学生通过完成任务获取积分,逐步提升技能等级。学生完成初级任务后可获“智能学徒”称号,随着技能提升和任务深入,可依次晋升为“智能工匠”和“智能训练师”。这一评价体系有效激发学生学习动力,促进学生技能水平持续提升。

此外,鼓励学生利用课后时间在竞赛平台上进行技能比拼,或参加各类课外竞赛获取额外经验值,这些经验值可用于同类技能经验值的置换,助力学生更快提升智能工匠等级。这种寓教于乐的方式,不仅增强学生实践能力,还培养学生团队合作精神与竞争意识。

通过构建多元化评价主体、细化量化培养标准、设计多维度质量评价指标以及引入增值评价体系等举措,全面提升现场工程师专项培养计划的质量与效果,为培养更多高素质、高技能的现场工程师筑牢坚实根基。

四、结语

在对人工智能专业人才培养路径的持续优化探索中,通过搭建高效的校企合作平台、构建模块化课程体系、创新实施“岗课赛证”融合育人模式以及建立多维度的质量评价机制,有效推动了人才培养与产业需求的深度融合。未来,面对技术的快速演进和产业格局的不断变革,我们将继续深化校企协同育人机制,完善课程结构,创新教学模式,不断提升人才培养的针对性与实效性,努力培育更多符合新时代产业发展需求的高素质人工智能现场工程师。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值