最短路径——Floyd算法

本文介绍了一种创建无向网图的邻接矩阵表示的方法,并详细展示了使用Floyd算法来寻找图中各顶点间的最短路径。通过输入顶点数、边数及边的权重,构建图的邻接矩阵,再利用Floyd算法优化路径,实现了从任意顶点到其他顶点的最短路径计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<iostream>

using  namespace  std;

typedef  char VertexType;
typedef  int EdgeType;

const  int   MAXVEX = 100;
const  int   INFINITY = 65535;

typedef int Pathmatirx[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];

typedef  struct
{
    VertexType  vexs[MAXVEX];
    EdgeType    arc[MAXVEX][MAXVEX];
    int numVertexes,numEdges;
}MGraph;

/*
建立无向网图的邻接矩阵表示
*/

void  CreateMGraph_Undirected(MGraph *G)
{
    int i,j,k,w;
    cout<<"请输入顶点数和边数:"<<endl;
    cin>>G->numVertexes>>G->numEdges;
    cout<<"请输入顶点名称:"<<endl;
    for(i = 0;i < G->numVertexes;++i)//输入顶点
    {       
        cin>>G->vexs[i];
    }

    for(i = 0;i < G->numVertexes;++i)//初始化邻接矩阵,除对角线元素 = 0,其余为INFINITY;
    {
        for(j = 0;j < G->numVertexes;++j)
        {
            if(i == j)
            {
                G->arc[i][j] = 0;
            }
            else
            {
                G->arc[i][j] = INFINITY;
            }
        }
    }

    for(k = 0;k < G->numEdges;++k)//完成邻接矩阵的填写工作
    {
        printf("请输入边(vi,vj)上的下标i,下标j和权w:\n");
        cin>>i>>j>>w;
        G->arc[i][j] = G->arc[j][i] = w;
    }
}

void  ShowMGraph(MGraph *G)//打印图的信息
{
    cout<<"图的顶点,边数为:"<<G->numVertexes<<","<<G->numEdges<<endl;
    cout<<"邻接矩阵为:"<<endl;
    
    for(int i = 0;i < G->numVertexes;++i)
    {
        for(int j = 0;j < G->numVertexes;++j)
        {
            if(G->arc[i][j] == INFINITY)
            {
                cout<<"#  ";
            }
            else
            {
                cout<<"  "<<G->arc[i][j]<<"  ";
            }
        }
        cout<<endl;
    }
}

//Floyd算法,求网图G中各顶点到V到其余顶点w最短路径,P[v][w]以及带权长度D[v][w]

void  ShortestPath_Floyd(MGraph *G,Pathmatirx * P,ShortPathTable * D)
{
    int v,w,k;
    for(v = 0;v < G->numVertexes;++v)
    {
         for(w = 0;w < G->numVertexes;++w)
         {
             (*D)[v][w] = G->arc[v][w];
             (*P)[v][w] = w;
         }
    }

    for(k = 0;k < G->numVertexes;++k)
    {
         for(v = 0;v < G->numVertexes;++v)
         {
             for(w = 0;w < G->numVertexes;++w)
             {
                 if((*D)[v][w] > (*D)[v][k]+(*D)[k][w])
                 {
                     (*D)[v][w] = (*D)[v][k]+(*D)[k][w];
                     (*P)[v][w] = (*P)[v][k];
                 }
             }
         }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值