- 博客(876)
- 资源 (3)
- 收藏
- 关注
原创 什么可能会定义人工智能的下一个十年?
以OpenAI描绘的智能进化路线图中,从chatbot->reasoner->agent->innovator到最后的organizer,懂语言进入到chatbot,推理能力加持下使用工具助推走到agent阶段,MCP作为Anthropic推出的标准工具协议,一推出便迅速成为行业的标准,使得大模型连接已有API等工具生态变得非常便捷,本书深入浅出,既有MCP的协议、原理等,也有诸多案例实践,是大模型时代不可多得的重要技术入门书籍!社区让我们能够认识更多的技术领导者和志同道合的同行, 有讨论和请教的机会。
2025-07-20 20:26:07
519
原创 万字解读:8种常见框架,选择哪一种来开发MCP呢?
运行 npm init@mcpdotdirect/create-MCP-server 会生成一个现成的 TypeScript 项目,其中包括运行 MCP 服务器所需的所有东西: 基本的服务器初始化、对 stdio 和 HTTP 传输的支持、用于添加自己的工具 / 资源的目录结构、 TypeScript 配置,以及用于开发和生产的有用的 npm 脚本。在云部署中,Quarkus 是 kubernetes 友好的,对于 Java 标准化的组织,允许他们利用现有的专业知识和基础设施,这特别有益。
2025-07-17 08:00:22
795
1
原创 MCP规范完整中译稿:2025-3-26版
本文件中的关键词 “MUST”、“MUST NOT”、“REQUIRED”、“SHALL”、“SHALL NOT”、“SHOULD”、“SHOULD NOT”、“RECOMMENDED”、“NOT RECOMMENDED”、“MAY” 和 “OPTIONAL” 应按照 BCP 14 [RFC2119][RFC8174] 中的规定解释,如本文件所示,当且仅当它们出现在所有大写字母中时表示如上含义。这为基本的 MCP 服务器和支持流的服务器提供了更多丰富的功能,并支持服务器到客户端的通知和请求。
2025-07-15 08:00:30
810
原创 团队在“死循环”里跑?10个硬核指标看穿真相!
这图就是你的“春运抢票倒计时”,让你看清是稳稳回家,还是得“买站票”(疯狂加班)。燃尽图就是团队的“进度条健康监测仪”!赶紧“Debug”!9. 🎪 在制品数量 (Work In Progress - WIP) - 你们在“花式杂耍”还是“专注输出”?用好它们,把你们的敏捷实践从“花架子”变成“真功夫”,让交付流程稳如老狗,丝般顺滑!用好它们,告别“拍脑袋计划”和“甩锅大会”,让团队跑得又快又稳,还少点996的怨念!一个Sprint里,团队“吃”掉了多少故事点(Story Points)?
2025-07-13 20:25:59
644
原创 量步北京:城市图书馆
在城市图书馆,前沿的数字化技术已深深融入其血脉,不再是冰冷的设备堆砌,而是化为流畅、智慧、充满温度的阅读新体验。从传统阅读的专注宁静,到数字交互的生动探索——这座图书馆本身,就是一座宏伟、立体、充满未来感的“进步阶梯”,将人类对知识的渴求与传承,具象化为一个触手可及的现实空间。更可以将这座图书馆本身视为一个巨大的“物联网与AI技术实景课堂”,从智能灯光调控到机器人路径规划,从大数据分析到环境感知系统,无处不在的科技应用,让抽象的技术原理变得直观可感,深刻体会科技赋能生活、启迪未来的强大力量。
2025-07-09 21:12:52
402
原创 大模型服务的推理优化探索
【引】有的事情别人不问时我们明白,一旦要我们解释它我们就不明白了,而这正是我们必须留心思索的东西。于是,开启了一次又一次的论文阅读之旅。开发并部署大模型应用肯定要考虑它们的服务成本。然而,钱并不是唯一的考虑因素,如果不能解决模型性能方面的问题,即使有很大的预算,大模型服务仍会受到影响。本文尝试讨论将 LLM 推理服务更改为高吞吐量引擎的挑战与应对方法。大模型的能力令人惊叹,但其独特的工作特性却给高性能服务部署带来了挑战。其处理过程主要分为两个阶段:预填充和解码。在预填充阶段,当你输入提示词(包含上下文、对话
2025-07-06 20:25:35
867
原创 你的RAG系统安全么?
需建立双重防护体系:一是通过在线和离线扫描工具,在数据入库和实时更新阶段检测威胁性内容(如“忽略先前指示”等危险指令),二是采用基于角色的访问控制(RBAC)机制,严格限定数据写入权限,确保只有授权用户能修改 RAG 知识库。因此,在享受 RAG 带来的便利的同时,也需要采取相应的措施来防范潜在的安全问题。开发人员需深入理解这些威胁的风险因素,并采取多层次的安全防护措施——包括严格的数据源审核、访问权限控制、动态检索优化等——才能在充分利用RAG技术优势的同时保障系统的稳定性与安全性。
2025-06-29 20:25:36
1134
原创 整洁架构or整洁代码?或许需要一个整洁的API!
通过这个简单的例子可以看出,即使是看似微不足道的功能,Clean API 的分层设计也能够提供清晰的结构划分,确保每个部分专注于自己的职责。而在生产环境中,则连接真实的云服务实例。简而言之,实体逻辑层是整个 Clean API 架构中最接近“不变”的部分——它屏蔽了外部变化的影响,确保系统核心逻辑稳定可靠,同时也为上层模块提供了统一、可测试、可替换的数据交互接口。的功能类似于 Rails 中的渲染器,但它更加灵活,支持多种输出格式,如 HAML、JSON 或自定义类型,便于构建多端兼容的 API 响应。
2025-06-26 20:25:57
995
原创 大模型的温度?解读Temperature
在连续的下一个单词生成中,gpt-2 给出一个初始输入句子,并以自回归的方式预测下一个最可能的单词。一旦下一个单词被预测,它就会被输出,这个过程就停止了,意思是一次只生成一个单词. 根据模型的学习关联,基于最高概率选择单词,并且除非使用新的输入重复该过程,否则不会发生进一步的预测。LLM 中的温度参数控制生成文本的随机性。当比较 0.5 和 10.0 两种温度下的输出时,我们观察到在 0.5 的温度下生成的文本更连贯,而在 10.0 的温度下,输出变得越来越不连贯,人类读者越来越难以理解。
2025-06-22 20:25:16
736
原创 大模型的性能提升:KV-Cache
这样一来,在后续的 softmax 操作中,这些位置的值会趋近于零,从而确保每个 token 在预测时只能关注到它之前的历史 token,而不会看到未来的输入。其核心思想在于缓存每一步计算生成的 Key 和 Value 向量,使得在生成新 token 时,模型无需重复计算历史上下文中的 K 和 V 值,从而大幅减少冗余计算,加快响应生成。KV-Cache的运行速度实际上受到多种因素的综合影响,其中包括模型的规模(具体体现在注意力层数的多少)、输入文本的长度n、所使用的硬件设备以及具体的实现细节等。
2025-06-18 08:00:13
774
原创 别让千亿参数成摆设!万字解读LLM应用的生存法则
当然,为了让体验更加流畅,我们会在用户上传文档的同时预先处理好所有的嵌入信息,并对常见的查询设置缓存,从而进一步减少等待时间。接下来,这些找到的信息会被加入到原本的问题描述中,形成一个更丰富、更有针对性的提问,最后才交给大模型处理。这样做的好处显而易见:不仅减少了模型产生的“幻觉”,还允许我们在不重新训练整个模型的情况下更新知识库,特别适合客服系统等需要频繁更新领域知识的应用场景。它的好处在于,并不是每次请求都要跑完整个模型,而是根据问题类型激活对应的“专家模块”,只动用必要的参数,大大减少计算开销。
2025-06-15 20:24:58
965
原创 为什么写了多年代码,还是没形成自己的工程思维?
如果习惯于每当收到新的通知时就立即开始编写代码,无论是 bug 修复还是功能更新,就无法停下来思考更大的问题,或者代码的哪些部分可能会受到影响。不要抱最好的预期,而是设计有弹性的系统,例如网络故障的重试和回退,防止连锁故障的断路器,速率限制和流量处理峰,设立监测和警报。如果认为“善战者无赫赫之功”是错的,如果项目的风平浪静全部被归为没有难度,如果只有不断救火的人才能得到赏识,如果只有在鸡飞狗跳的环境中才能得到成长的话, 就不要看本文了。解决问题,而不仅仅是写代码,编写代码并不困难,重要的是编写正确的代码。
2025-06-08 20:25:38
1046
原创 万字揭秘:生成式AI浪潮中的架构模式
【引】又是一次漫长的阅读之旅,试图从工程视角看生成式人工智能,虽然没有完成从GAM到大型多模态模型 (LMM) 的架构演练,但是可以清晰地理解其脉络,在构建应用时有的放矢。当AI开始创作电影剧本、设计建筑蓝图、合成药物分子时,我们可能正站在历史的技术拐点上。生成式人工智能(Generative AI,简称GenAI)已在全球范围内掀起颠覆性浪潮——从娱乐产业的数字人创作到医疗领域的药物研发,从市场营销的智能生成到科学研究的虚拟实验,这项技术正在重塑人类认知的边界。在表象的魔法背后,是精密运转的神经网络架构:
2025-06-03 07:57:54
1744
原创 抽象的进化:AgentOps
从离散的、有界的工作流开始,其中Agent增加了明确的价值,然后随着团队在这个新范例中构建经验的积累而逐渐扩展。这里的根本转变是深刻的: 我们现在定义目标、边界和可用的工具,然后让Agent决定如何在这些限制内完成目标,而不是指定确切的过程 ,例如,“当用户点击这个按钮时,验证这个表单,然后进行这个 API 调用”。在 AgentOps 中,我们转而定义成功的标准 ,例如“在保持满意度的同时有效地解决客户问题” ,提供知识库和行动工具的访问权,并指定护栏 (“未经批准不退还超过 x 元的款项”)。
2025-06-01 17:17:57
645
原创 拆解OpenAI最大对手的杀手锏:为什么会是MCP?
广泛接受的标准,如 Kubernetes、 React 和 HTTP,通过将爆炸性的 MxN 问题转换为易处理的 m + n 生态系统解决方案,适应了数据生产者和消费者的广泛多样性,因此,如果它们能够获得临界质量,那么它们将是非常有价值的。新手们可能忽略了一个更微妙的问题,Anthropic 一直明确强调支持比 OpenAI 更多的工具 ,然而我们并没有真正的针对大型工具的基准测试 ,所以不知道各个大模型工具之间的差异,但直观地说,MCP 在一次调用中支持的平均工具比传统方式要多得多。
2025-05-25 20:25:37
977
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
559
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
1010
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
1044
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
791
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
653
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
865
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
809
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
544
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
567
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
971
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
788
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
761
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
570
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
760
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
754
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
807
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
669
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
952
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
778
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
845
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
594
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
571
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
878
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
728
原创 智能体间协作的“巴别塔困境“如何破解?解读Agent通信4大协议:MCP/ACP/A2A/ANP
MCP不是用所有可能的细节来填充提示词,而是帮助组合重要的背景信息,采用模块化的、即时的提示词构建,使用更智能的背景信息,更少的token,得到更好的输出。ACP采用了完全不同的方法。智能体的理解是根据上下文注入的,而不是自我建模的。ANP的核心概念是Interface,包括自然语言接口和结构化接口,将智能体交互方式的定义下放到了Interface中,支持自主发现、去中心化身份验证和语义推理,虽然 ANP 目前不支持像 rgm 这样的预测或分层推理体系结构,但是它的基础设施可以提供传输和发现层的智能体。
2025-05-18 20:25:51
774
计算机世界1000期特稿——信息革命的流金岁月
2008-11-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人