AcWing——91. 最短Hamilton路径

博客围绕最短Hamilton路径问题展开,给定带权无向图,求从起点0到终点n - 1不重不漏经过每个点一次的最短路径。介绍了输入输出格式、数据范围,并给出样例。指出该问题是NP完全问题,采用状态压缩枚举记录最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

91. 最短Hamilton路径
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数nn。

接下来nn行每行nn个整数,其中第ii行第jj个整数表示点ii到jj的距离(记为a[i,j])。

对于任意的x,y,zx,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

输出一个整数,表示最短Hamilton路径的长度。

数据范围

1≤n≤201≤n≤20
0≤a[i,j]≤1070≤a[i,j]≤107
输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:

18
ps:最短哈密顿路是一个NP完全问题,就是说没有什么多项式的解法,对于这种问题,就只能枚举,但枚举时,我们用了状态压缩的方法来记录当前的最优解,具体参考代码的注释

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=20,M=1<<20;
int n;
int f[M][N],w[N][N];
int main(){
	cin>>n;
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			cin>>w[i][j];
		}
	}
	memset(f,0x3f,sizeof(f));//把所有的状态初始化成正无穷 
	f[1][0]=0;//有1个点,在0号点,且没走过路程,初始化就为0 
	for(int i=0;i<1<<n;i++){
		for(int j=0;j<n;j++){  //枚举所有状态 
			if(i>>j&1){        //判断i的第j位是不是1,是1状态就是合法的 
				for(int k=0;k<n;k++){//枚举下所有整数 
					if(i-(1<<j)>>k&1){ 
						f[i][j]=min(f[i][j],f[i-(1<<j)][k]+w[k][j]);
					}
				}
			} 
		}
	}
	cout<<f[(1 << n)-1][n-1]<<endl;
	return 0;
}
哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值