91. 最短Hamilton路径
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
输入格式
第一行输入整数nn。
接下来nn行每行nn个整数,其中第ii行第jj个整数表示点ii到jj的距离(记为a[i,j])。
对于任意的x,y,zx,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出格式
输出一个整数,表示最短Hamilton路径的长度。
数据范围
1≤n≤201≤n≤20
0≤a[i,j]≤1070≤a[i,j]≤107
输入样例:
5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:
18
ps:最短哈密顿路是一个NP完全问题,就是说没有什么多项式的解法,对于这种问题,就只能枚举,但枚举时,我们用了状态压缩的方法来记录当前的最优解,具体参考代码的注释
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=20,M=1<<20;
int n;
int f[M][N],w[N][N];
int main(){
cin>>n;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cin>>w[i][j];
}
}
memset(f,0x3f,sizeof(f));//把所有的状态初始化成正无穷
f[1][0]=0;//有1个点,在0号点,且没走过路程,初始化就为0
for(int i=0;i<1<<n;i++){
for(int j=0;j<n;j++){ //枚举所有状态
if(i>>j&1){ //判断i的第j位是不是1,是1状态就是合法的
for(int k=0;k<n;k++){//枚举下所有整数
if(i-(1<<j)>>k&1){
f[i][j]=min(f[i][j],f[i-(1<<j)][k]+w[k][j]);
}
}
}
}
}
cout<<f[(1 << n)-1][n-1]<<endl;
return 0;
}