归并排序
归并排序采用分治策略实现稳定排序,其核心思想是将序列递归分解后进行有序合并。
def merge_sort(arr):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result
时间复杂度分析
设序列长度为nnn,递归树深度为logn\log nlogn,每层合并操作耗时O(n)O(n)O(n)。递推公式为:
T(n)=2T(n2)+O(n)T(n) = 2T(\frac{n}{2}) + O(n)T(n)=2T(2n)+O(n)
根据主定理可得时间复杂度为O(nlogn)O(n \log n)O(nlogn)。当处理大规模数据时,这种对数增长特性使算法效率显著优于O(n2)O(n^2)O(n2)的简单排序算法。
该算法的空间复杂度为O(n)O(n)O(n),主要来源于合并过程中创建的临时数组。实际应用中可通过原地归并等优化策略降低空间消耗。