归并排序:高效稳定的分治算法

归并排序

归并排序采用分治策略实现稳定排序,其核心思想是将序列递归分解后进行有序合并。

def merge_sort(arr):
    if len(arr) <= 1:
        return arr
    mid = len(arr) // 2
    left = merge_sort(arr[:mid])
    right = merge_sort(arr[mid:])
    
    result = []
    i = j = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    result.extend(left[i:])
    result.extend(right[j:])
    return result
时间复杂度分析

设序列长度为nnn,递归树深度为log⁡n\log nlogn,每层合并操作耗时O(n)O(n)O(n)。递推公式为:
T(n)=2T(n2)+O(n)T(n) = 2T(\frac{n}{2}) + O(n)T(n)=2T(2n)+O(n)
根据主定理可得时间复杂度为O(nlog⁡n)O(n \log n)O(nlogn)。当处理大规模数据时,这种对数增长特性使算法效率显著优于O(n2)O(n^2)O(n2)的简单排序算法。

该算法的空间复杂度为O(n)O(n)O(n),主要来源于合并过程中创建的临时数组。实际应用中可通过原地归并等优化策略降低空间消耗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mikes zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值