一、引言
动态规划(Dynamic Programming,DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划算法的核心思想是将复杂问题分解为更小的子问题,并利用这些子问题的解来构造原问题的解。
二、算法原理
动态规划算法的核心思想是分治法,将原问题分解为相对简单的子问题,递归地求解子问题,然后合并子问题的解以得到原问题的解。动态规划通常用于求解最优化问题,如求解单源最短路径、最大子序列和、最小路径覆盖等。动态规划算法的基本步骤如下:
定义状态:确定原问题的最优解与哪些子问题的解相关。
确定状态转移方程:找出原问题的最优解如何通过子问题的解来表达。
计算顺序:确定计算子问题解的顺序,确保在求解任一子问题时,其所有子问题的解已经计算完毕。
避免重复计算:利用数组或哈希表存储已经计算过的子问题的解,避免重复计算。
三、数据结构
动态规划算法主要涉及以下数据结构、通常使用以下数据结构来存储子问题的解:
- 数组:用于存储一维或二维状态。
- 哈希表:用于存储不规则的状态,以便快速查找。
- 矩阵:用于存储多维状态。