内容概述
本节首先从齐次线性方程组入手,研究了解集的向量形式,由此建立了解向量、解空间的思考模式;接着为了完备性,扩展到非齐次线性方程组,说明了从向量、空间的角度线性方程组解集的一般表示形式。总之,本节的重点是建立从向量的线性组合、空间的几何意义的角度来研究线性方程组的解集。
齐次线性方程组
线性方程组称为齐次的,若它可写成Ax=0A\boldsymbol x = \boldsymbol 0Ax=0的形式。其中AAA是m×nm \times nm×n矩阵而0\boldsymbol 00是Rm\mathbb R^mRm中的零向量(从向量的角度看,就是说AAA的各列生成了0\boldsymbol 00向量)。
显然,齐次线性方程组至少有一个解,即x=0\boldsymbol x = \boldsymbol 0x=0,这个解称为它的平凡解。对给定方程Ax=0A\boldsymbol x = \boldsymbol 0Ax=0,重要的是它是否有非平凡解,即满足Ax=0A\boldsymbol x = \boldsymbol 0Ax=0的非零向量0\boldsymbol 00。
回顾1.2节关于解的存在性与唯一性的讨论:
若线性方程组相容,则它的解集可能有两种情形:1. 当没有自由变量时,有唯一解; 2. 若至少有一个自由变量,则有无穷多解。
由上述结论,可以得知,对于齐次方程来说:
当没有自由变量时,存在唯一解,即x=0\boldsymbol x = \boldsymbol 0x=0
有平凡解当且仅当方程至少有一个自由变量
例:
确定下列齐次方程组是否有非平凡解,并描述它的解集:
3x1+5x2−4x3=0−3x1−2x2+4x3=06x1+x2−8x3=0 \begin{aligned} 3x_1 + 5x_2 - 4x_3 = 0\\ -3x_1 - 2x_2 + 4x_3 = 0\\ 6x_1 + x_2 - 8x_3 = 0 \end{aligned} 3x1+5x2−4x3=0−3x1−2x2+4x3=06x1+x2−8x3=0
解:
该方程组的系数矩阵可以化简为如下的简化阶梯形:
[10−43001000000] \begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} ⎣⎡100010−3400000⎦⎤
由此可知,x1x_1x1,x2x_2x2是基本变量,x3x_3x