内容概述
本节首先从向量的代数关系出发,引入了向量组的线性无关、线性相关两个重要的概念;接着,以递进的方式,首先研究了一个或两个向量之间的关系,引入一些判断向量关系的方法,例如通过观察法来判定两个向量之间的关系,并从几何的角度去理解这种关系,接着研究了两个或多个向量彼此之间的关系,并引入了一些新的定理,用来判定向量集合的相关关系,例如从线性组合的角度、方程组的行列数量等等。本节的重点是要从代数的、几何的不同角度去理解和品味线性无关、线性相关这两个概念,为将来的学习打下基础。
线性无关
定义:
Rn\mathbb R^nRn中一组向量{ v1,⋯ ,vp}\{\boldsymbol v_1, \cdots, \boldsymbol v_p\}{ v1,⋯,vp}称为线性无关的,若向量方程
x1v1+x2v2+⋯+xpvp=0x_1\boldsymbol v_1 + x_2\boldsymbol v_2 + \cdots + x_p\boldsymbol v_p = \boldsymbol 0x1v1+x2v2+⋯+xpvp=0
仅有平凡解。
向量组(集){ v1,⋯ ,vp}\{\boldsymbol v_1, \cdots, \boldsymbol v_p\}{ v1,⋯,vp}称为线性相关的,若存在不全为零的权c1,⋯ ,cpc_1,\cdots,c_pc1,⋯,cp,使得
c1v1+c2v2+⋯+cpvp=0c_1\boldsymbol v_1 + c_2\boldsymbol v_2 + \cdots + c_p\boldsymbol v_p = \boldsymbol 0c1v1+c2v2+⋯+cpvp=0
并且这个方程称为向量v1,⋯ ,vp\boldsymbol v_1, \cdots, \boldsymbol v_pv1,⋯,vp之间的线性相关关系,其中权不全为零。一组向量线性相关当且仅当它不是线性无关的。也可以说向量组{ v1,⋯ ,vp}\{\boldsymbol v_1, \cdots, \boldsymbol v_p\}{ v1,⋯,vp}是线性相关组。
注意:
线性无关、线性相关的概念,本质上是在研究不同向量之间的关系,向量方程只是其中一种描述形式。
例:
设
v1=[123]v_1 = \begin{bmatrix}1\\ 2 \\ 3\end{bmatrix}v1=⎣⎡123⎦⎤, v2=[456]v_2 = \begin{bmatrix}4\\ 5 \\ 6\end{bmatrix}v2=⎣⎡456⎦⎤, v3=[210]v_3 = \begin{bmatrix}2\\ 1 \\ 0\end{bmatrix}v3=⎣⎡210⎦⎤,
a. 确定向量组{
v1,v2,v3}\{\boldsymbol v_1, \boldsymbol v_2,\boldsymbol v_3\}{
v1,v2,v3}是否线性相关
b. 可能的话,求出v1\boldsymbol v_1v1,v2\boldsymbol v_2v2,v3\boldsymbol v_3v3的一个线性相关关系
解:
a. 把相应的增广矩阵行变换为阶梯形矩阵:
[14200−3−300000]\begin{bmatrix}1 & 4 & 2 & 0\\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix}⎣⎡1004−302−30000⎦⎤
显然,x1x_1x1和x2x_2x2为基本变量,x3x_3x3为自由变量,x3x_3