4.1 向量空间与子空间

主要内容

本节讲述了向量空间的概念,这里要把之前由几何概念得到的对向量空间的直觉进行进一步抽象和泛化,只要满足定义的一组向量,都可以构成向量空间,例如多项式、实函数等等。在向量空间的基础上,引入了子空间的概念。

向量空间的定义

定义:

一个向量空间是由一些被称为向量的对象构成的非空集合VVV,在这个集合上定义了两个运算,称为加法和标量乘法,服从以下公理,这些公理必须对VVV中所有向量u,v,w\boldsymbol u,\boldsymbol v,\boldsymbol wu,v,w及所有标量cccddd均成立。

  1. u+v\boldsymbol u + \boldsymbol vu+v属于VVV
  2. u+v=v+u\boldsymbol u + \boldsymbol v = \boldsymbol v + \boldsymbol uu+v=v+u
  3. (u+v)+w=u+(v+w)(\boldsymbol u+ \boldsymbol v) + \boldsymbol w = \boldsymbol u + (\boldsymbol v + \boldsymbol w)(u+v)+w=u+(v+w)
  4. VVV中存在一个零向量0\boldsymbol 00,使得u+0=u\boldsymbol u+ \boldsymbol 0 = \boldsymbol uu+0=u
  5. VVV中每个向量u\boldsymbol uu,存在VVV中一个向量−u-\boldsymbol uu,使得u+(−u)=0\boldsymbol u + (-\boldsymbol u)=\boldsymbol 0u+(u)=0
  6. u\boldsymbol uu与标量ccc的乘法cuc\boldsymbol ucu属于VVV.
  7. c(u+v)=cu+cvc(\boldsymbol u+\boldsymbol v)=c\boldsymbol u + c\boldsymbol vc(u+v)=cu+cv
  8. (c+d)u=cu+du(c+d)\boldsymbol u=c\boldsymbol u+d\boldsymbol u(c+d)u=cu+du
  9. c(du)=(cd)uc(d\boldsymbol u) = (cd)\boldsymbol uc(du)=(cd)u
  10. 1u=u1\boldsymbol u=\boldsymbol u1u=u

要证明一个空间VVV是不是向量空间,就要证明这个空间中的任意一个元素是否满足上述定理。

例:

SSS是数的双向无穷序列空间,则其中某一个元素是{yk}=(⋯ ,y−2,y−1,y0,y1,y2,⋯ )\{y_k\}=(\cdots,y_{-2},y_{-1},y_0,y_1,y_2,\cdots){yk}=(,y2,y1,y0,y1,y2,),若其中有另一个元素{zk}\{z_k\}{zk},二者的和由对应各项的和构成,c{yk}c\{y_k\}c{yk}是序列{cyk}\{cy_k\}{cyk},可以证明SSS是向量空间。这样的一种集合来自于工程学,当一个信号在离散时间上被测量(采样)时,它就可以被看作是SSS中的一个元素。我们称SSS为(离散的)信号空间。

例:

n≥0n \geq 0n0,次数最高为nnn的多项式集合PnP_nPn,由形如下列的多项式组成:
p(t)=a0+a1t+a2t2+⋯+antn\boldsymbol p(t)=a_0+a_1t+a_2t^2+\cdots+a_nt^np(t)=a0+a1t+a2t2++antn
其系数和变量ttt均为实数。考虑另一个多项式:
q(t)=b0+b1t+b2t2+⋯+bntn\boldsymbol q(t)=b_0+b_1t+b_2t^2+\cdots+b_nt^nq(t)=b0+b1t+b2t2++bntn
二者的和为:
(p+q)(t)=p(t)+(t)=(a0+b0)+(a1+b1)t+⋯+(an+bn)tn(\boldsymbol p + \boldsymbol q)(t)=\boldsymbol p(t)+\boldsymbol (t)=(a_0+b_0)+(a_1+b1)t+\cdots + (a_n+b_n)t^n(p+q)(t)=p(t)+(t)=(a0+b0)+(a1+b1)t++(an+bn)tn
标量乘法为:
(cp)(t)=cp(t)=ca0+(ca1)t+⋯+(can)tn(c\boldsymbol p)(t)=c\boldsymbol p(t)=ca_0+(ca_1)t+\cdots +(ca_n)t^n(cp)(t)=cp(t)=ca0+(ca1)t++(can)tn
这些定义明显满足公理1和公理6,这是因为+q\boldsymbol +\boldsymbol q+qcpc\boldsymbol pcp均为次数不超过nnn的多项式。其他公理也可一一证明。于是,PnP_nPn是一个向量空间。

例:

假设集合VVV是定义在DDD上的全体实值函数的集合,则这个集合VVV也是一个向量空间(省去举例和证明)。这个例子的意义是,将Rn\mathbb R^nRn中建立的几何直觉上升到一般向量空间。

子空间

在许多问题中,一个向量空间是由一个大的向量空间中适当的向量的子集所构成。在此情形下,向量空间的10个公理中只需要验证三个,其余的自然成立。

定义:

向量空间VVV的一个子空间VVV的一个满足以下三个性质的子集HHH
a. VVV中的零向量在HHH
b. HHH对向量加法封闭,即对HHH中任意向量u,v\boldsymbol u,\boldsymbol vu,v,和u+v\boldsymbol u+\boldsymbol vu+v仍在HHH
c. HHH对标量乘法封闭,即对HHH中任意向量u\boldsymbol uu和任意标量ccc,向量cuc\boldsymbol ucu仍在HHH中。

每个子空间都是一个向量空间,反之,每个向量空间是一个子空间(针对本身或其他更大的空间而言)。对两个向量空间,若其中一个在另一个内部,此时子空间这个词被使用,而VVV的子空间是将VVV看作更大的子空间。

下图中的HHH就是空间VVV的一个子空间
在这里插入图片描述

例:

PPP为全体实系数多项式的集合,由于PPP中运算的定义与函数运算相同,因此,PPP是定义在Rn\mathbb R^nRn上的全体实值函数的空间一个子空间。另外,对每个n≥0n \geq 0n0PnP_nPnPPP的子空间,这是因为,PnP_nPn包含零多项式,且PnP_nPn中两个多项式之和仍在PnP_nPn中,数乘以PnP_nPn中一个多项式仍在PnP_nPn中。

例:

向量空间R2\mathbb R^2R2不是R3\mathbb R^3R3的子空间,因为R2\mathbb R^2R2甚至不是R3\mathbb R^3R3的子集。这是因为R2\mathbb R^2R2中的每个向量含有2个元素,而R3\mathbb R^3R3中的每个向量则含有3个元素。
另一方面,集合H=[st0]H=\begin{bmatrix}s \\ t \\ 0\end{bmatrix}H=st0s,ts,ts,t均为实数,是R3\mathbb R^3R3的一个子集。
在这里插入图片描述

例:

R3\mathbb R^3R3中一个不通过原点的平面不是R3\mathbb R^3R3的子空间,因为此平main不包含R3\mathbb R^3R3中的零向量。类似的,R2\mathbb R^2R2中一个不通过原点的直线也不是R2\mathbb R^2R2的子空间。

由一个集合生成的子空间

例:

给定向量空间VVV中向量v1,v2\boldsymbol v_1,\boldsymbol v_2v1,v2,令H=Span{v1,v2}H=Span\{\boldsymbol v_1,\boldsymbol v_2\}H=Span{v1,v2},证明HHHVVV的一个子空间

证:

要证明该命题,只需证明对于HHH中的任意两个向量u,w\boldsymbol u,\boldsymbol wu,wcuc\boldsymbol ucuu+w\boldsymbol u + \boldsymbol wu+w也在HHH中。由于H=Span{v1,v2}H=Span\{\boldsymbol v_1,\boldsymbol v_2\}H=Span{v1,v2},因此有:
u=s1v1+s2v2,w=t1v1+t2v2\boldsymbol u=s_1\boldsymbol v_1+s_2\boldsymbol v_2,\boldsymbol w=t_1\boldsymbol v_1+t_2\boldsymbol v_2u=s1v1+s2v2,w=t1v1+t2v2
那么显然有:
u+w=(s1+t1)v1+(s2+t2)v2\boldsymbol u+\boldsymbol w=(s_1+t_1)\boldsymbol v_1+(s_2+t_2)\boldsymbol v_2u+w=(s1+t1)v1+(s2+t2)v2
cu=(cs1)v1+(cs2)v2c\boldsymbol u=(cs_1)\boldsymbol v_1+(cs_2)\boldsymbol v_2cu=(cs1)v1+(cs2)v2
显然,u+w\boldsymbol u+\boldsymbol wu+wcuc\boldsymbol ucu都属于Span{v1,v2}Span\{\boldsymbol v_1,\boldsymbol v_2\}Span{v1,v2},得证。

在后面4.5节中,可以证明R3\mathbb R^3R3的每一个非零子空间除了R3\mathbb R^3R3本身,要么是Span{v1,v2}Span\{\boldsymbol v_1,\boldsymbol v_2\}Span{v1,v2},这里v1,v2\boldsymbol v_1,\boldsymbol v_2v1,v2是两个线性无关的向量,要么是Span{v},v≠0Span\{\boldsymbol v\},\boldsymbol v \neq \boldsymbol 0Span{v},v=0。对第一种情形,此子空间是一个通过原点的平面;对第二种情形,子空间是一条通过原点的直线。
在这里插入图片描述

由这个例子,可以推广得到如下的定理:
定理:

v1,⋯ ,vp\boldsymbol v_1, \cdots, \boldsymbol v_pv1,,vp在向量空间VVV中,则Span{v1,⋯ ,vp}Span\{\boldsymbol v_1,\cdots,\boldsymbol v_p\}Span{v1,,vp}VVV的一个子空间。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值