Topical Word Embeddings

论文《Topical Word Embeddings》探讨了Word Embedding面临的homonymy和polysemy问题,提出了三种模型以改进multi-prototype方法的不足。这些模型在上下文词相似性和文本分类任务中进行了实验,结果显示单词的多种含义之间存在关联,且宏观和微观平均精度、召回率和F1分数展示了模型的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文 《 Topical Word Embeddings 》 记录

paper
code

Word Embedding面临的问题

homonymy and polysemy

解决homonymy and polysemy方法

multi-prototype: 对每个word赋予多个embedding

当前multi-prototype方法的缺点

1). These models generate multi-prototype vectors for each word in isolation, ignoring complicated correlations among words as well as their contexts. 说的很抽象
2). In multi-prototype setting, contexts of a word are divided into clusters with no overlaps. In reality, a word’s several senses may correlate with each other, and there is not clear semantic boundary between them.

解决上述缺点的方法(提出三个模型)

TWE

TWE三个模型的缺点

  • TWE-1: TWE-1 does not consider the immediate interaction between a word and its assigned topic for learning(单词和主题向量没有直接的交互)
  • TWE-2: TWE-2 considers the inner interaction of a word-topic pair by simply regarding the pair as a pseudo word, but it suffers from the sparsity issue because the occurrences of each word are rigidly discriminated into different topics.(假设单词在语料中出现N次, 每个主题下的单词平均只能学习到 N/T 次)
  • TWE-3: TWE-3 provides trade-off between discrimination and sparsity. But during the learning process of TWE-3, topic embeddings will influence the corresponding word embeddings, which may make those words in the same topic less discriminative.( T<<W )

训练细节

Initialization is important for learning TWE models. In TWE-1, we first learn word embeddings using Skip-Gram. Afterwards, we initialize each topic vector with the average over all words assigned to this topics, and learn topic embeddings while keeping word embeddings unchanged. In TWE-2, we initialize the vector of each topic-word pair with the corresponding word vector from Skip-Gram, and learn TWE models. In TWE-3, we initialize word vectors using those from Skip-Gram, and topic vectors using those from TWE-1, and learn TWE models.

Experiments

Contextual Word Similarity

考虑到每个单词只有在上下文的条件下才可以区分, 所以在评价multi-prototype模型的时候,采用Contextual Word Similarity任务,试验结果如下:
Contextual Word Similarity
个人总结: AvgSimC优于MaxSimC, 反映出单词之间的语义还是有交集的, 正如作者所说In reality, a word’s several senses may correlate with each other, and there is not clear semantic boundary between them;

Text Classification

macro-average and micro-average(precision, recall, F1-measure)

个人感觉只适用multi-class classification

二分类
Tables Positive negative
True TP FN
False FP TN

precision=P, recall=R

P=TPTP+FP

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值