DES算法详解
论文背景
论文全称:Single-Shot Object Detection with Enriched Semantics
论文链接:https://arxiv.org/abs/1712.00433
论文日期:2018.4.8
本文基于丰富语义信息的方式提出了一个新型的单阶段神经网络算法,使用一个特殊的深度神经网络结构来丰富目标检测特征的语义。整个算法结构可以被分为两个部分:
- 一个是语义分割分支(semantic segmentation branch),是一个由弱分割真实标签监督的模型,不需要过多的注释;
- 一个是全局激活模型(global activation module),是一个以自监督的模式去学习通道与目标类别之间的关系。
实验结果
本文最终在PASCAL VOC 与MS COCO数据集上进行了综合实验。基于VGG16设计的DES算法,在VOC2007测试集上实现了81.7mAP的准确率,在COCO的测试-验证集上实现了32.8mAP的准确率,并且每张图片只花费31.5ms。
算法简介
SSD算法是使用一个多层的特征图生成结构,通过分层的方式学习语义信息,低层特征图检测更小的目标,高层的特征图检测大目标。但是低层特征只具备基础视觉信息,而没有很多语义信息,这会导致两个问题:(1)只是利用了浅层的特征,并没有用到高层的语义特征,小目标的检测效果不好;(2)不良的低层特征也会破坏高层特征的质量。
算法结构
DES算法将神经网络分为两个部分,一个检测分支与一个分割分支。