DES(Detection with Enriched Semantics)算法详解

DES算法是一种结合语义分割的单阶段目标检测模型,通过语义增强提升低层和高层特征的语义信息,提高了检测性能。在PASCAL VOC 2007上达到81.7mAP,在COCO测试-验证集上达到32.8mAP。算法使用VGG16和分割模块,通过弱分割标签自我监督学习,增强了低层和高层特征图的语义信息,解决了传统方法中低层特征缺乏语义的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文背景

论文全称:Single-Shot Object Detection with Enriched Semantics
论文链接:https://arxiv.org/abs/1712.00433
论文日期:2018.4.8

本文基于丰富语义信息的方式提出了一个新型的单阶段神经网络算法,使用一个特殊的深度神经网络结构来丰富目标检测特征的语义。整个算法结构可以被分为两个部分:

  • 一个是语义分割分支(semantic segmentation branch),是一个由弱分割真实标签监督的模型,不需要过多的注释;
  • 一个是全局激活模型(global activation module),是一个以自监督的模式去学习通道与目标类别之间的关系。

实验结果

本文最终在PASCAL VOC 与MS COCO数据集上进行了综合实验。基于VGG16设计的DES算法,在VOC2007测试集上实现了81.7mAP的准确率,在COCO的测试-验证集上实现了32.8mAP的准确率,并且每张图片只花费31.5ms。

算法简介

SSD算法是使用一个多层的特征图生成结构,通过分层的方式学习语义信息,低层特征图检测更小的目标,高层的特征图检测大目标。但是低层特征只具备基础视觉信息,而没有很多语义信息,这会导致两个问题:(1)只是利用了浅层的特征,并没有用到高层的语义特征,小目标的检测效果不好;(2)不良的低层特征也会破坏高层特征的质量。

算法结构

DES算法将神经网络分为两个部分,一个检测分支与一个分割分支。

<think>嗯,用户想了解复杂事件模式归纳(Complex Event Schema Induction)以及它如何与知识增强扩散模型结合,特别是在那篇论文里的方法。首先,我需要明确这两个概念的定义。 复杂事件模式归纳应该是指从大量数据中自动识别出事件的结构或模式,比如事件之间的顺序、因果关系等。这可能涉及到自然语言处理或事件抽取的技术。而知识增强扩散模型可能是在扩散模型的基础上,融入外部知识库或知识图谱,以提高模型对事件模式的理解能力。 接下来,用户提到的论文标题是《Complex Event Schema Induction with Knowledge-Enriched Diffusion Model》,我需要回忆或查找相关研究。扩散模型通常用于生成任务,通过逐步去噪的过程生成数据。结合知识增强的话,可能在生成过程中引入结构化知识,比如实体关系或事件链,来指导模式的形成。 实现方法可能包括以下几个步骤:首先,构建一个包含事件相关知识的图谱或数据库;然后,在扩散模型的训练过程中,利用这些知识来约束或引导事件的生成,确保生成的事件模式符合逻辑和常识;最后,通过聚类或归纳算法从生成的结果中提取出通用的事件模式。 可能还需要考虑如何处理不同事件之间的依赖关系,以及如何评估生成的模式是否准确。此外,知识增强的方式可能包括实体链接、关系抽取,或者在模型架构中加入知识注意力机制。 用户可能需要更详细的步骤,比如具体的模型结构、知识注入的方法、训练策略等。同时,生成的相关问题需要围绕应用场景、技术挑战、与传统方法的对比等方面展开,帮助用户深入理解该领域。</think>### 复杂事件模式归纳(Complex Event Schema Induction)与知识增强扩散模型 复杂事件模式归纳(Complex Event Schema Induction)旨在从非结构化文本中自动提取事件的抽象结构模式(如时间顺序、因果关系、参与者关系等),并将其组织为可解释的框架[^1]。论文《Complex Event Schema Induction with Knowledge-Enriched Diffusion Model》提出了一种结合知识图谱与扩散模型的方法,其核心实现步骤如下: 1. **知识注入阶段** 通过预训练语言模型(如BERT)嵌入外部知识图谱(如ConceptNet),将事件实体间的语义关系(如$r_{\text{因果}}$、$r_{\text{时序}}$)编码为向量表示: $$e_{k} = \text{KG-Encoder}(h,r,t)$$ 其中$h,r,t$分别代表知识三元组的头实体、关系和尾实体。 2. **扩散建模过程** 采用反向扩散过程逐步去噪,生成符合逻辑的事件序列。在每一步去噪时,通过交叉注意力机制融合知识向量: $$x_{t-1} = f_{\theta}(x_t, e_k, t)$$ 这里$f_{\theta}$是带有知识约束的神经网络,确保生成事件满足常识性因果关系[^2]。 3. **模式归纳机制** 使用层次聚类算法对生成的事件链进行抽象,提取高频出现的模式节点(如$[触发词: \text{爆炸}] \rightarrow [结果: \text{伤亡}]$),最终构建层级化事件模式树。 #### 技术优势 - **知识增强**:通过知识图谱解决传统方法中隐含关系推断不准的问题(如将“暴雨→洪水”关联性显式编码) - **可控生成**:扩散模型允许通过调节噪声水平控制事件模式的粒度(从具体实例到抽象框架) - **可解释性**:最终模式树支持节点溯源,可通过可视化展示事件演化路径 ```python # 知识增强扩散的伪代码示例 def denoising_step(x_t, knowledge_emb): # 计算知识条件梯度 grad_knowledge = cross_attention(x_t, knowledge_emb) # 计算数据重建梯度 grad_recon = autoencoder(x_t) # 融合梯度更新 x_{t-1} = x_t - lr*(grad_recon + λ*grad_knowledge) return x_{t-1} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值