
论文学习
coyote_xujie
在人间的纸飞机,飞到了我梦里的城堡。。。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Depth-attentional Features for Single-image Rain Removal
这是2019CVPR的一篇文章,主要创新点是引入了深度信息完成去雨。 文章指出了目前的去雨的方法忽略了雨痕在图像中呈现出的物理特性,导致去雨的有效性较低。同时分析了雨图成像机理,指出远处的物体更多地是被雾遮挡,近处的则是雨纹,分析了受场景深度影响的雨的视觉效果。并根据场景深度制定了一个带有雨条纹和雾的雨成像模型。为了训练的像更接近真实在雨景中拍摄的图像本文准备了一个新的数据集。因为数据集需要申请...原创 2019-12-27 15:22:22 · 1651 阅读 · 2 评论 -
Squeeze-and-Excitation Networks(译)
摘要 卷积神经网络建立在卷积运算的基础上,通过融合局部感受野内的空间信息和通道信息来提取信息特征。为了提高网络的表示能力,许多现有的工作已经显示出增强空间编码的好处。在这项工作中,我们专注于通道,并提出了一种新颖的架构单元,我们称之为“Squeeze-and-Excitation”(SE)块,通过显式地建模通道之间的相互依赖关系,自适应地重新校准通道式的特征响应。通过将这些块堆叠在一起,我们证明了...翻译 2019-12-07 21:32:46 · 1412 阅读 · 1 评论 -
VGG:VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION译文
论文地址:Very Deep Convolutional Networks for Large-Scale Image Recognition 摘要 本文研究了深度对卷积网络在大规模图像识别中准确率的影响。本文的主要贡献是,对使用很小(3×3)(3×3)(3×3)的卷积滤波器来增加深度的网络进行了一个全面的评估,表明了通过将深度提高到16——19个权重层,业界最好网络的性能也能够得到显著的提升。这...翻译 2019-12-01 21:54:03 · 241 阅读 · 0 评论