题目描述
开头和结尾都是元音字母(aeiouAEIOU)的字符串为元音字符串,其中混杂的非元音字母数量为其瑕疵度。比如:
“a” 、 “aa”是元音字符串,其瑕疵度都为0
“aiur”不是元音字符串(结尾不是元音字符)
“abira”是元音字符串,其瑕疵度为2
给定一个字符串,请找出指定瑕疵度的最长元音字符子串,并输出其长度,如果找不到满足条件的元音字符子串,输出0。
子串:字符串中任意个连续的字符组成的子序列称为该字符串的子串。
输入描述
首行输入是一个整数,表示预期的瑕疵度flaw,取值范围[0, 65535]。
接下来一行是一个仅由字符a-z和A-Z组成的字符串,字符串长度(0, 65535]。
输出描述
输出为一个整数,代表满足条件的元音字符子串的长度。
用例
输入 | 0 asdbuiodevauufgh |
输出 | 3 |
说明 | 无 |
输入 | 2 aeueo |
输出 | 0 |
说明 | 无 |
核心解题思路
题目要求找出最长的元音子串,满足以下条件:
- 子串以元音字母开头和结尾。
- 中间的非元音字母数量(瑕疵度)等于给定值。
直接遍历所有可能的子串会导致时间复杂度过高。优化的思路是:
- 预处理:收集所有元音的位置。
- 数学转化:将瑕疵度转化为两个元音的位置差。
- 哈希表优化:利用哈希表快速查找符合条件的元音对。
方法步骤详解
1. 预处理元音位置
遍历字符串,记录所有元音的位置到数组 vowel_indices
。
2. 数学转化
假设有两个元音的位置为 vowel_indices[i]
和 vowel_indices[j]
(i < j)。中间的瑕疵度可推导为:
瑕疵度 = (vowel_indices[j] - vowel_indices[i] - 1) - (j - i - 1)
= (vowel_indices[j] - j) - (vowel_indices[i] - i)
定义 x[k] = vowel_indices[k] - k
,则瑕疵度等于 x[j] - x[i]
。要求 x[j] - x[i] = flaw
。
3. 哈希表优化
遍历 vowel_indices
,使用哈希表记录每个 x[k]
的首次出现位置。对于每个 j
,计算 target = x[j] - flaw
,若 target
存在于哈希表中,则更新最大长度。
4. 边界处理
- 无元音:直接返回0。
- 单个元音:当
flaw=0
时,子串长度为1。
实现代码
def main():
flaw = int(input())
s = input().strip()
vowels = {'a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'}
vowel_indices = []
for i, c in enumerate(s):
if c in vowels:
vowel_indices.append(i)
if not vowel_indices:
print(0)
return
max_len = 0
if flaw == 0:
max_len = 1
x_dict = {vowel_indices[0] - 0: 0}
for j in range(1, len(vowel_indices)):
current_x = vowel_indices[j] - j
target = current_x - flaw
if target in x_dict:
i = x_dict[target]
current_len = vowel_indices[j] - vowel_indices[i] + 1
if current_len > max_len:
max_len = current_len
if current_x not in x_dict:
x_dict[current_x] = j
print(max_len)
if __name__ == "__main__":
main()
复杂度分析
- 时间复杂度:O(n),预处理和哈希表操作均线性遍历。
- 空间复杂度:O(m),存储元音位置和哈希表。
通过数学转化和哈希表的优化,避免了暴力枚举,高效解决了问题。