题目描述
对一个数据a进行分类,分类方法为:
此数据a(四个字节大小)的四个字节相加对一个给定的值b取模,如果得到的结果小于一个给定的值c,则数据a为有效类型,其类型为取模的值;如果得到的结果大于或者等于c,则数据a为无效类型。
比如一个数据a=0x01010101,b=3,按照分类方法计算(0x01+0x01+0x01+0x01)%3=1,
所以如果c=2,则此a为有效类型,其类型为1,如果c=1,则此a为无效类型;
又比如一个数据a=0x01010103,b=3,按照分类方法计算(0x01+0x01+0x01+0x03)%3=0,
所以如果c=2,则此a为有效类型,其类型为0,如果c=0,则此a为无效类型。
输入12个数据,第一个数据为c,第二个数据为b,剩余10个数据为需要分类的数据,
请找到有效类型中包含数据最多的类型,并输出该类型含有多少个数据。
输入描述
输入12个数据,用空格分隔,第一个数据为c,第二个数据为b,剩余10个数据为需要分类的数据。
输出描述
输出最多数据的有效类型有多少个数据。
用例
输入 | 3 4 256 257 258 259 260 261 262 263 264 265 |
输出 | 3 |
说明 | 10个数据4个字节相加后的结果分别为1 2 3 4 5 6 7 8 9 10, 故对4取模的结果为1 2 3 0 1 2 3 0 1 2,c为3,所以0 1 2都是有效类型,类型为1和2的有3个数据,类型为0的只有2个数据,故输出3。 |
输入 | 1 4 256 257 258 259 260 261 262 263 264 265 |
输出 | 2 |
说明 | 10个数据4个字节相加后的结果分别为1 2 3 4 5 6 7 8 9 10, 故对4取模的结果为1 2 3 0 1 2 3 0 1 2,c为1, 所以只有0是有效类型,类型为0的有2个数据,故输出2。 |
分类数据统计问题详解
一、核心解题思路
问题分析
题目要求对10个数据进行分类处理:
- 每个数据是32位整数,需要拆分为4个字节(每个字节8位)
- 计算4个字节的和并对b取模:
r = (byte1+byte2+byte3+byte4) % b
- 分类规则:
- 若
r < c
:有效类型,类型值为r - 否则:无效类型,不计数
- 目标:找出有效类型中出现次数最多的类型,输出其出现次数
关键步骤
- 字节拆分:将32位整数拆分为4个8位字节
- 分类计算:
- 计算字节和
s = byte1+byte2+byte3+byte4
- 计算模值
r = s % b
- 若
r < c
则记录该类型
- 结果统计:统计各有效类型的出现次数,找出最大值
算法选择
使用哈希表(字典)记录各有效类型的出现次数:
count_dict = {}
for 每个数据:
r = 计算取模结果
if r < c:
count_dict[r] += 1
max_count = max(count_dict.values())
二、完整代码实现
def main():
# 读取输入数据
data = list(map(int, input().split()))
if len(data) < 12: # 增加输入验证
print(0)
return
c = data[0] # 分类阈值
b = data[1] # 取模基数
values = data[2:12] # 10个分类数据
# 初始化类型计数器
count_dict = {}
# 处理每个数据
for x in values:
# 拆分32位整数为4个字节
byte1 = (x >> 24) & 0xFF # 最高位字节
byte2 = (x >> 16) & 0xFF
byte3 = (x >> 8) & 0xFF
byte4 = x & 0xFF # 最低位字节
# 计算字节和并取模
byte_sum = byte1 + byte2 + byte3 + byte4
r = byte_sum % b
# 记录有效类型
if r < c:
count_dict[r] = count_dict.get(r, 0) + 1
# 输出最多数据的有效类型数量
if count_dict:
max_count = max(count_dict.values())
print(max_count)
else:
print(0) # 没有有效类型时输出0
if __name__ == "__main__":
main()
三、算法原理解析
核心操作解析
- 字节拆分:
byte1 = (x >> 24) & 0xFF
- 右移24位获取最高8位
& 0xFF
屏蔽高位,保留8位值
- 取模运算:
r = byte_sum % b
- 确保结果在
[0, b-1]
范围内
- 类型统计:
count_dict[r] = count_dict.get(r, 0) + 1
- 使用字典记录各类型出现次数
get(r,0)
处理首次出现的类型
时间复杂度
- O(10×4) = O(40):10个数据,每个数据4次操作
- 高效处理最大1000+数据的扩展情况
四、示例解析
用例1:输入 3 4 256 257 258 259 260 261 262 263 264 265
计算过程:
- 拆分数据:
- 256 → [0,0,1,0] 和=1 %4=1 (有效)
- 257 → [0,0,1,1] 和=2 %4=2 (有效)
- 258 → [0,0,1,2] 和=3 %4=3 (无效)
- 259 → [0,0,1,3] 和=4 %4=0 (有效)
- 260 → [0,0,1,4] 和=5 %4=1 (有效)
- 261 → [0,0,1,5] 和=6 %4=2 (有效)
- 262 → [0,0,1,6] 和=7 %4=3 (无效)
- 263 → [0,0,1,7] 和=8 %4=0 (有效)
- 264 → [0,0,1,8] 和=9 %4=1 (有效)
- 265 → [0,0,1,9] 和=10 %4=2 (有效)
- 有效类型统计:
- 类型0:259,263 → 2次
- 类型1:256,260,264 → 3次
- 类型2:257,261,265 → 3次
- 输出最大值:3
用例2:输入 1 4 256 257 258 259 260 261 262 263 264 265
计算过程:
- 相同的数据拆分和取模
- 分类规则变化:c=1 → 只有 r<1 有效(即 r=0)
- 有效类型统计:
- 类型0:259,263 → 2次
- 类型1、2:均不符合 r<1
- 输出最大值:2
五、总结
算法特点:
- 精确高效:使用位运算高效拆分字节
- 逻辑清晰:分步骤处理分类规则
- 健壮性强:处理边界情况(无有效类型)
- 空间优化:字典仅存储有效类型
关键要点:
- 位运算技巧:移位和掩码操作拆分字节
- 模运算应用:确保类型值在合理范围
- 字典统计:高效记录类型出现次数
- 最大值提取:
max(count_dict.values())
应用场景:
- 数据分类统计系统
- 网络协议数据处理
- 嵌入式系统字节操作
- 数据特征提取和分析
该解法严格遵循题目要求,正确处理了字节拆分、模运算、分类统计等关键步骤输出最优结果。