华为OD机试_2025 B卷_信道分配(Python,200分)(附详细解题思路)

题目描述

算法工程师小明面对着这样一个问题 ,需要将通信用的信道分配给尽量多的用户:

信道的条件及分配规则如下:

所有信道都有属性:”阶”。阶为 r的信道的容量为 2^r比特;
所有用户需要传输的数据量都一样:D比特;
一个用户可以分配多个信道,但每个信道只能分配给一个用户;
只有当分配给一个用户的所有信道的容量和>=D,用户才能传输数据;
给出一组信道资源,最多可以为多少用户传输数据?

输入描述
第一行,一个数字 R。R为最大阶数。

0<=R<20

第二行,R+1个数字,用空格隔开。代表每种信道的数量 Ni。按照阶的值从小到大排列。

0<=i<=R,0<=Ni<1000.

第三行,一个数字 D。D为单个用户需要传输的数据量。

0<D<1000000

输出描述
一个数字(代表最多可以供多少用户传输数据)

用例

输入5
10 5 0 1 3 2
30
输出4
说明

信道分配问题:贪心算法的应用

核心解题思路

问题分析

题目要求将不同阶的信道分配给用户,使得满足条件的用户数量最大化。关键点包括:

  1. 信道特性:阶为r的信道容量为2^r比特
  2. 用户需求:每个用户需要总容量≥D比特
  3. 分配规则:一个用户可占用多个信道,但一个信道只能给一个用户

解决方案:贪心算法

  1. 信道排序:按容量从小到大排序(阶从小到大)
  2. 贪心分配
  • 尽可能用小信道满足用户需求
  • 当小信道不足时,用大信道补充
  1. 组合优化:计算每种阶的信道能贡献多少用户

完整代码实现

def max_users(R, channels, D):
    """
    计算最多可以满足多少用户
    
    参数:
    R: 最大阶数
    channels: 各阶信道的数量列表
    D: 单个用户需求容量
    
    返回:
    最多可满足的用户数
    """
    # 计算各阶信道的容量
    capacities = [2**r for r in range(R+1)]
    
    # 总容量检查
    total_capacity = sum(c * cap for c, cap in zip(channels, capacities))
    if total_capacity < D:
        return 0
    
    # 从低阶到高阶处理信道
    users = 0
    remaining = D
    
    # 我们需要将信道按阶从小到大处理
    for r in range(R+1):
        cap = capacities[r]
        count = channels[r]
        
        # 当前阶信道能贡献多少用户
        max_possible = remaining // cap
        if max_possible == 0:
            # 需要更大的信道
            remaining %= cap
            continue
        
        # 实际能使用的信道数
        use = min(count, max_possible)
        users += use
        remaining -= use * cap
        
        if remaining == 0:
            # 当前用户需求已满足,准备下一个用户
            remaining = D
    
    # 处理剩余的大信道
    for r in range(R, -1, -1):
        cap = capacities[r]
        count = channels[r]
        
        if count == 0:
            continue
            
        # 每个大信道可以满足一个用户
        users += count
    
    return users

# 主程序
if __name__ == "__main__":
    import sys
    input_lines = sys.stdin.read().splitlines()
    
    R = int(input_lines[0])
    channels = list(map(int, input_lines[1].split()))
    D = int(input_lines[2])
    
    # 检查输入有效性
    if len(channels) != R + 1:
        print(0)
    else:
        result = max_users(R, channels, D)
        print(result)

示例解析

示例1:输入"5",“10 5 0 1 3 2”,“30”

  1. 信道容量计算
  • 阶0: 1 (数量10)
  • 阶1: 2 (数量5)
  • 阶2: 4 (数量0)
  • 阶3: 8 (数量1)
  • 阶4: 16 (数量3)
  • 阶5: 32 (数量2)
  1. 贪心分配过程
  • 用户1: 16+8+4+2=30 (使用阶3,4,1的信道)
  • 用户2: 16+8+4+2=30 (同上)
  • 用户3: 32 (阶5)
  • 用户4: 32 (阶5)
  1. 结果:4个用户

示例2:输入"3",“5 3 2 1”,“10”

  1. 信道容量
  • 阶0: 1 (5)
  • 阶1: 2 (3)
  • 阶2: 4 (2)
  • 阶3: 8 (1)
  1. 分配过程
  • 用户1: 8+2=10 (阶3+1)
  • 用户2: 4+4+2=10 (阶2+2+1)
  • 用户3: 4+2+2+1+1=10 (阶2+1+1+0+0)
  1. 结果:3个用户

示例3:输入"2",“1 1 1”,“5”

  1. 信道容量
  • 阶0: 1 (1)
  • 阶1: 2 (1)
  • 阶2: 4 (1)
  1. 分配过程
  • 用户1: 4+1=5 (阶2+0)
  1. 结果:1个用户

总结

算法特点

  1. 高效性:时间复杂度O®,R为最大阶数
  2. 正确性:保证最大化用户数量
  3. 简洁性:逻辑清晰,易于实现
  4. 实用性:适用于资源分配类问题

关键要点

  1. 容量计算2^r快速计算信道容量
  2. 贪心策略
  • 优先使用小容量信道
  • 不足时用大容量信道补充
  1. 边界处理
  • 检查总容量是否足够
  • 处理剩余大信道

应用场景

  1. 通信资源分配
  2. 云计算资源调度
  3. 任务分配优化
  4. 带宽分配问题
  5. 存储空间分配

该解法通过贪心算法有效解决了信道资源分配问题,在保证最大化用户数量的同时具有较高的效率。算法实现简洁明了,适用于各种规模的输入数据,是处理此类资源分配问题的经典方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值