LeetCode No.120 Triangle

本文介绍了一种使用动态规划解决三角形最小路径和问题的方法。通过从底部向上计算,逐步更新每一步的最短路径,最终得出从顶点到底部的最小路径总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

===================================================================

题目链接:https://leetcode.com/problems/triangle/

题目大意:求三角形从上往下的最小和。

思路:动态规划,从下往上找。

1、刚开始dp = triangle[n-1] 。

2、逐渐往上走,则dp[j] = triangle[i][j] + min ( dp[j] , dp[j+1] ) 。

3、最后dp[0]就是结果。

参考代码:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int n = triangle.size() ;
        if ( n == 0 )
            return 0 ;
        vector <int> dp = triangle[n-1] ;
        for ( int i = n - 2 ; i >= 0 ; i -- )
        {
            for ( int j = 0 ; j <= i ; j ++ )
            {
                dp[j] = triangle[i][j] + min ( dp[j] , dp[j+1] ) ;
            }
        }
        return dp[0] ;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值