【光热电站CSP】含光热电站的热—电综合能源系统优化调度(Matlab代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

含光热电站的热—电综合能源系统优化调度研究

摘要

一、研究背景与意义

1.1 能源转型与“双碳”目标

1.2 光热电站的优势

1.3 热—电综合能源系统的需求

二、光热电站特性及其对IES调度的影响

2.1 光热电站的运行特性

2.2 光热电站对IES调度的影响

三、含光热电站的IES优化调度方法

3.1 优化调度目标

3.2 约束条件

3.3 优化调度方法

四、案例分析

4.1 系统描述

4.2 运行结果

五、未来研究方向

5.1 多能互补与协同优化

5.2 不确定性处理与鲁棒优化

5.3 智能优化算法的应用

5.4 市场机制与政策支持

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

光热发电技术是一种配置有大容量储热设备的新型可再生能源发电技术[10],其实现了从光能到热能、热能到电能之间的能量转换,即光热电站利用光场收集来自太阳能的热量,通过传热介质进行热能的传递和交换,热能经传热介质进入发电环节加热水形成过热水蒸汽驱动发电机组进行发电。此外,由于光热电站配置有储热装置,因而具备了能量时移特性,使得光热电站可以灵活地协调电网对风电、光伏等间歇性可再生能源的消纳[11]。
由于光热电站自身具有清洁污染小、出力稳定可控、寿命周期长等优点,吸引了国内外研究者的广泛关注。文献[12]建立了光热电站的数学模型,研究储热装置对光热发电的影响,并分析了配备储热装置的光热电站参与市场运行的经济价值。文献[13]建立了含光热电站的电网调度模型,分析了光热发电完全被消纳的前提下,光热并网在降低发电成本、提高可再生能源消纳率等方面的潜在价值。文献[14]研究了储热设备容量对光热电站运行经济性的影响,利用灵敏度分析法,证明储热利用率和储热设备投资之间的平衡点为最优储热容量值,并以澳大利亚和美国的6个光热电站进行了验证分析。文献[15]建立了基于场景法的光热-风电联合系统的自调度模型,通过算例分析,证明了考虑多日光热-风电出力预测信息的自调度方法比只考虑单日信息的自调度方法更优,并讨论了不同时间尺度和光热电站的储热设备参数对自调度结果的影响。文献[16]建立了光热-光伏联合发电模型,以联合系统的收益最大化和跟随负荷能力最大化为目标,通过IEEE 30节点的算例结果表明,光热电站可以平抑光伏电站的出力波动性,促进太阳能的消纳。文献[17]提出了一种基于概率距离的场景法处理风光出力的不确定性,在此基础上建立了含光热电站的联合发电系统双层优化调度模型,在算例结果分析中,指出了将光热、风电、光伏、火电组合成联合发电系统,可以达到多源互补利用的目标。文献[18]构建了考虑光热电站灵活出力特性的联合发电系统优化调度模型,通过算例仿真实验,证明了充分利用光热电站灵活出力的优势可以弥补风电、光伏出力预测误差较大的不足,实现促进可再生能源消纳的目的。文献[19]构建了一种风电-光伏-光热联合发电系统,研究光热电站对风电和光伏出力不确定性的抑制能力,实验结果表明加装光热电站的发电系统能够有效平抑风光出力的功率波动,减少风光并网带来的不确定性影响,同时提高系统运行的经济性。文献[20]构建了含光热电站的多能源联合发电系统,利用光热电站出力的可调节性,对大规模并网的风电和光伏发电进行削峰填谷,平滑系统出力曲线,深入研究对比加入光热电站前后系统的等效负荷峰谷差和运行经济性研究结果表明光热电站能够有效弥补风光出力的间歇性和不确定性,降低系统运行风险,提高系统经济性。文献[21]在多能源虚拟电厂中引入光热电站,利用光热电站和储能电
池的能量调节特性平抑风光出力的波动性,仿真结果表明光热电站与储能电池联合调节,可以有效提高虚拟电厂实时跟踪电负荷的能力,减少源-荷功率偏差,提高系统稳定性和运行经济性。

含光热电站的热—电综合能源系统优化调度研究

摘要

光热电站(Concentrated Solar Power, CSP)作为一种清洁、灵活的新型可再生能源设备,在热—电综合能源系统中发挥着重要作用。本文聚焦含光热电站的热—电综合能源系统优化调度问题,通过构建“电热联产—储热调节—多能互补”的协同调度模型,实现系统经济性、环保性与可靠性的多目标优化。研究结果表明,光热电站的引入显著提高了可再生能源消纳能力,降低了碳排放,并增强了能源系统的抗风险能力。

一、研究背景与意义

1.1 能源转型与“双碳”目标

随着全球能源结构的转型和环境保护意识的提升,构建清洁、高效、可持续的能源系统已成为全球共识。中国政府提出了“碳达峰、碳中和”的目标,要求到2030年前实现二氧化碳排放达到峰值,并努力争取2060年前实现碳中和。在此背景下,提高可再生能源消纳能力、降低碳排放成为能源系统优化的重要方向。

1.2 光热电站的优势

光热电站利用太阳能产生热能,并通过热—电转化过程为电网提供电力。与传统化石燃料电站不同,CSP电站通过储能系统可以在没有太阳辐射的夜晚继续发电,提高了能源的利用率。光热电站具有以下优势:

  • 清洁污染小:利用太阳能发电,无燃烧过程,减少污染物排放。
  • 出力稳定可控:配置储热装置,能够平滑光伏等可再生能源的出力波动。
  • 寿命周期长:光热电站的设计寿命通常超过25年,具有长期的经济效益。

1.3 热—电综合能源系统的需求

热—电综合能源系统(Integrated Energy System, IES)能够实现电力、热力等多种能源形式的协同利用和优化配置,提高能源利用效率、降低排放和增强能源系统可靠性。光热电站的引入为IES提供了新的契机,通过光热电站与常规电源、储能设备、负荷的有机融合,构成多能流耦合的综合能源系统。

二、光热电站特性及其对IES调度的影响

2.1 光热电站的运行特性

光热电站作为IES的重要组成部分,其独特的运行特性对IES的优化调度产生显著影响:

  • 太阳辐射的间歇性和波动性:太阳辐射强度受气候条件的影响,具有明显的间歇性和波动性,使得光热电站的发电出力也呈现出类似的变化规律。
  • 储热系统的存在:储热系统是光热电站的关键组成部分,能够将太阳能转化为热能存储起来,并在需要时释放出来发电。储热系统的存在使得光热电站具有一定的可控性,能够平滑光伏等间歇性可再生能源的出力波动。
  • 发电效率的影响因素:光热电站的发电效率受太阳辐射强度、环境温度、以及运行状态等多种因素的影响。优化调度需要考虑这些因素,选择最佳的运行方式,提高光热电站的发电效率。

2.2 光热电站对IES调度的影响

  • 提高可再生能源消纳能力:光热电站的储热能力可以平滑可再生能源的出力波动,提高可再生能源的消纳水平,降低弃风、弃光现象的发生。
  • 提升能源利用效率:IES能够将电力、热力等多种能源形式进行耦合,实现能源的梯级利用和协同优化。光热电站不仅能够发电,还可以提供热能,满足区域内的供热需求。
  • 降低碳排放:光热电站利用太阳能发电,具有零碳排放的优势。通过在IES中引入光热电站,可以减少对化石能源的依赖,降低碳排放强度。
  • 增强能源系统抗风险能力:单一能源供应模式容易受到外部因素的影响,导致供能中断。IES能够将多种能源形式进行互联互通,形成相互支撑的网络。光热电站的储热能力可以在紧急情况下提供备用电力,增强能源系统的抗风险能力。

三、含光热电站的IES优化调度方法

3.1 优化调度目标

IES优化调度的目标通常是实现系统的经济性、环保性和可靠性:

  • 经济性目标:以最小化系统的运行成本为目标,包括燃料成本、启停成本、维护成本、购电成本等。
  • 环保性目标:以最小化系统的碳排放量为目标,通过优化调度减少化石能源的使用,降低碳排放。
  • 可靠性目标:以满足系统的负荷需求为目标,保证电、热等各种能源的供应,提高能源系统的可靠性和安全性。

3.2 约束条件

IES的优化调度需要满足一系列的约束条件,主要包括:

  • 电网约束:包括节点电压约束、线路潮流约束、系统旋转备用约束等,保证电网的稳定运行。
  • 设备约束:包括发电机组的出力上下限约束、储能设备的充放电功率约束、热网的水力约束等,保证设备的正常运行。
  • 能量平衡约束:包括电力平衡约束、热力平衡约束等,保证能源供需平衡。
  • 光热电站约束:包括集热器面积限制、储热容量限制、透平进汽量限制等,保证光热电站的稳定运行。

3.3 优化调度方法

针对含光热电站的IES优化调度问题,现有的研究主要集中在以下几个方面:

  • 确定性优化方法:假设所有输入参数都是已知的,例如预测负荷曲线、光伏出力曲线、风电出力曲线等。常用的确定性优化方法包括线性规划(Linear Programming, LP)、混合整数线性规划(Mixed-Integer Linear Programming, MILP)、非线性规划(Nonlinear Programming, NLP)等。这些方法能够有效地求解大规模的优化问题,但无法处理输入参数的不确定性。
  • 随机优化方法:考虑了输入参数的不确定性,例如预测误差等。常用的随机优化方法包括随机规划(Stochastic Programming, SP)、鲁棒优化(Robust Optimization, RO)等。随机规划通过模拟多种可能的场景来考虑不确定性,但计算复杂度较高;鲁棒优化通过寻找对所有可能场景都可行的解来保证系统的鲁棒性,但往往会过于保守。
  • 模型预测控制(Model Predictive Control, MPC):MPC是一种基于模型的控制方法,通过预测未来一段时间内的系统状态,制定最优的控制策略。MPC能够动态地调整系统的运行状态,适应不断变化的环境条件。MPC在IES优化调度中具有广泛的应用前景,可以有效地处理输入参数的不确定性,提高系统的运行效率和可靠性。
  • 智能优化算法:智能优化算法是一类基于自然界或生物行为的优化算法,例如遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、模拟退火算法(Simulated Annealing, SA)等。这些算法具有全局搜索能力强、适应性好等优点,在IES优化调度中得到了广泛应用。

四、案例分析

4.1 系统描述

以典型系统为例,构建含光热电站(100MW)+燃气轮机(50MW)+电锅炉(20MW)+储热罐(800MWh)的综合能源系统,满足50MW电负荷与30MW热负荷的协同供应。光热电站的储热可平抑±20MW的功率波动。

4.2 运行结果

  • 经济性提升:通过优化调度,系统的运行成本显著降低,主要得益于光热电站的储热能力平抑了可再生能源的出力波动,减少了弃风、弃光现象的发生,降低了购电成本。
  • 环保性改善:光热电站的引入显著降低了系统的碳排放量。通过优化调度,减少了化石能源的使用,提高了可再生能源的消纳比例,从而降低了碳排放强度。
  • 可靠性增强:光热电站的储热能力在紧急情况下提供了备用电力,增强了能源系统的抗风险能力。通过优化调度,保证了电、热等各种能源的供应,提高了能源系统的可靠性和安全性。

五、未来研究方向

5.1 多能互补与协同优化

未来研究应进一步探索光热电站与其他可再生能源(如风电、光伏)的互补特性,通过协同优化调度实现多种能源的高效利用。同时,考虑引入电动汽车、氢能等新型负荷和储能设备,构建更加复杂的多能流耦合综合能源系统。

5.2 不确定性处理与鲁棒优化

针对可再生能源出力的不确定性,未来研究应致力于开发更加有效的随机优化方法和鲁棒优化方法。通过考虑多种可能的场景和不确定性因素,提高优化调度策略的鲁棒性和适应性。

5.3 智能优化算法的应用

智能优化算法在IES优化调度中具有广泛的应用前景。未来研究应进一步探索智能优化算法在IES优化调度中的应用,开发更加高效、稳定的优化算法,提高优化调度的效率和准确性。

5.4 市场机制与政策支持

市场机制和政策支持对IES的发展具有重要影响。未来研究应关注碳交易市场、绿色证书交易等市场机制对IES优化调度的影响,以及政府政策对IES发展的支持作用。通过完善市场机制和政策支持体系,推动IES的健康发展。

📚2 运行结果

 

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赖光前. 含光热电站的冷—热—电综合能源系统优化调度[D].东北林业大学,2022.DOI:10.27009/d.cnki.gdblu.2022.001091.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值