发光太阳聚光器的蒙特卡洛光线追踪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

发光太阳聚光器的蒙特卡洛光线追踪研究

一、研究背景与意义

二、蒙特卡洛光线追踪方法原理

三、LSC的光学行为分析

四、基于蒙特卡洛光线追踪的LSC模拟

五、模拟结果与分析

六、实验验证与对比

七、研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章


💥1 概述

蒙特卡罗技术是一种通过统计方法模拟光子在系统中传播的方法。随机数、累积分布函数(CDF)和概率密度函数(PDF)被用来从函数或谱线(如太阳AM 1.5)中进行抽样。通过这种方式,随机数决定了光子的行进方式,从而避免了复杂的辐射传输方程。

如果x是从均匀分布[0,1]中抽取的随机数,那么CDF可以被设定为x,并可以重新排列以便获得需要随机选择的变量。通过这种方式,CDF下的面积将等于从均匀分布中选择的随机数下的面积,当足够多次地进行抽样选择时,随机选择的变量将能够重新创建原始的概率密度函数。

表面相互作用是该程序的核心。首先确定光子与LSC的哪个面进行相互作用,然后通过调用is_TIR函数检查光子是反射还是透射。如果光子完全内部反射,则根据光子在反射后是否在LSC内或是否与另一个边界相交来设置PH_ACTION的状态。
首先通过whichSurface()函数确定光子与哪个面相交,并返回面的编号。Which surface首先检查光子是否与一个平面相交,然后通过确定光子和平面的交点是否在LSC边界内进行第二次检查。

Is_TIR.m
确定面后,需要确定光子是否在空气/LSC边界发生反射或透射。在光子撞击LSC的一个面后,表面相互作用调用is_TIR函数来确定光子是否完全内部反射(total internal reflection)或透过表面传输。首先从主程序中获取全反射的临界角:

详细讲解见第4部分。

发光太阳聚光器的蒙特卡洛光线追踪研究

一、研究背景与意义

发光太阳聚光器(Luminescent Solar Concentrator, LSC)作为一种新型的太阳能聚光技术,通过吸收散射和漫射的太阳辐射,将其转换成特定波长的光,并通过全内反射传输至边缘的光伏电池,展现出其独特的优势。然而,由于发光过程的各项异性、多次散射以及材料光学参数的复杂性,精确预测LSC的光学效率具有挑战性。蒙特卡洛光线追踪方法作为一种基于概率统计的数值模拟技术,能够有效地模拟LSC内部复杂的光传输过程,为LSC的设计优化和性能预测提供可靠的工具。

二、蒙特卡洛光线追踪方法原理

蒙特卡洛光线追踪方法通过模拟大量光线在介质中的随机行走过程来研究宏观光学现象。在LSC的模拟中,该方法能够精确地追踪每个光子的路径,并考虑其在传播过程中可能发生的各种光学事件,如吸收、发射、散射、全内反射等。通过统计大量光子的行为,可以获得宏观的光学特性,如光学效率、焦点亮度和光束均匀性等。

三、LSC的光学行为分析
  1. 吸收与发射:LSC中的发光材料吸收特定波长的太阳光,并通过荧光或磷光过程重新发射出波长较长的光。发射光的方向分布并非完全均匀,而是具有一定的各向异性。
  2. 全内反射:由于LSC基板的折射率高于周围环境,发射出的光若满足全内反射条件,则会在基板内部传输至边缘,最终被安装在边缘的光伏电池吸收转换为电能。
  3. 散射:光线在LSC内部还可能发生散射,改变光线的传播方向,影响全内反射的效率。
四、基于蒙特卡洛光线追踪的LSC模拟
  1. 模型建立:建立详细的三维几何模型和光学属性模型,定义LSC的几何形状、基板的折射率、发光材料的吸收光谱和发射光谱等参数。

  2. 光线追溯规则

    • 从光源发出大量光线,并随机选择它们的方向。
    • 每条光线在遇到LSC的光学表面时,根据表面材料的光学特性决定光线的反射或折射方向。
    • 考虑光线在LSC内部的吸收、发射、散射和全内反射等过程。
  3. 统计方法:通过跟踪足够多的光线,统计出光能在空间中的分布,从而评估LSC的性能,如光学效率、焦点亮度和光束均匀性等。

五、模拟结果与分析
  1. 光学效率:模拟结果揭示了不同染料浓度、基板材料、几何形状以及边界条件对LSC光学效率的影响。例如,增加发光材料的浓度可以提高吸收概率,但也可能导致发射光的自吸收增加,从而降低光学效率。
  2. 光传输路径:通过可视化光线的传输路径,可以直观地看到光线如何在LSC内部传播,以及如何被聚焦到边缘的光伏电池上。
  3. 参数优化:基于模拟结果,可以对LSC的设计参数进行优化,以提高其光学效率。例如,通过调整基板的厚度和发光材料的浓度,可以找到最优的参数组合。
六、实验验证与对比

将蒙特卡洛光线追踪的模拟结果与实验数据进行对比验证,以评估模拟方法的准确性和可靠性。实验结果表明,蒙特卡洛方法能够有效地模拟LSC复杂的光传输过程,为LSC的设计优化和性能预测提供了可靠的工具。

七、研究展望

未来的研究可以进一步探索以下方向:

  1. 更复杂的光学模型:考虑更多影响LSC光学效率的因素,如基板材料的散射特性、发光材料的荧光量子效率等。
  2. 多物理场耦合模拟:将光学模拟与热学、电学等模拟相结合,以更全面地评估LSC的性能。
  3. 实际应用研究:将蒙特卡洛光线追踪方法应用于实际的LSC设计和优化中,推动LSC技术的商业化应用。

📚2 运行结果

部分代码:

%% Calculate the CDF of an emission spectrum 

A = csvread('LumRed305_Emission_Spectrum.csv');
wavelength = A(:,1);  % Reads wavelengths from first column 
em = A(:,2); % Reads extinction coef from second column
num = 0;
k = length(em);
sum_Em =0;

P = trapz(em)
 % Numerical integration using trapezoidal method

    for i=1:1:(k-1)
        sum_Em = sum_Em + 0.5*(em(i+1) +em(i))*(wavelength(i+1) - wavelength(i));
    end

    % sumEm is the numerical integral of Flux over all wavelengths
    % calculate CDF_em(i) the cumulative distribution function for any wavelength i
    % Divide C(i) by integral over all wavelengths to normalise the inegral of
    % C(i) to equal 1

    % The following for loop normalises the numerical integration 
    for i=(1:1:(k))
        num =0;
        for(j=1:1:(i-1))
        
            num = num + 0.5*(em(j+1) +em(j))*(wavelength(j+1) - wavelength(j));
        end
     
    CDF_Em(i) = num /sum_Em; % Cumulative distribution function of the Emission spectrum
   
    end
    
    plot(wavelength,CDF_Em) %Plots CDF of emission spectrum
    % The following for loop returns randomly selected emission wavelengths
    % based on the CDF calculated above. The number of randomly emitted photons
    % will equal the length of the vector QY_selected_lambdas
    
    % Save CDF as CSV file for use in photons_emitted function
    t = transpose(CDF_Em);
    w = transpose(wavelength);
    dataToSave = [ wavelength transpose(CDF_Em) ]
    csvwrite('CDF_Emission_Spectrum.csv',dataToSave)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码及文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值