【论文阅读】【三维目标检测】Center-based 3D Object Detection and Tracking

本文介绍了CenterPoint,一种基于点云的3D目标检测方法,其在nuScenes和Waymo数据集上表现出色。与2D CenterNet相似,但针对3D场景,CenterPoint证明了无Anchor方法在3D目标检测中的可行性。它通过预测对象中心、尺寸、方向和使用双线性插值进行精细化,解决了点云稀疏性和3D框尺寸变化的问题,实验证明了其优于传统基于Anchor的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CenterPoint,2021CVPR,刷榜nuScenes和Waymo数据集。
作者是与2D版的CenterNet是同样的,看来是一个组出来的文章。

从网络结构上看,本文就是将CenterNet用到了基于点云的三维目标检测问题上,但本文的出现也证明了,Anchor Free的这种方法应用在基于点云的三维目标检测任务中也是可行的。

Introduction

CenterPoint这篇的Introduction细节地说明了该方法的想法来源。

作者认为,相比于2D目标检测,3D目标检测有以下3个不同:
1)点云更稀疏,在空间中有很多地方是没有点的,也就没有原始特征。
2)3D Box是不与坐标系平行的,起码在xy坐标轴方向是不平行的。不像2D Box,总是一个水平的长方形。
3)3D Box尺寸变化大。(但我认为这个不成问题,2D中的也变化大)

第1点,第3点先按下不说,来说第2点。方向角的存在,使得预先的与坐标轴平行的anchor对于3D box来说就不能说是一个很好的解决方案了。原文中说:“One solution might be to classify a different template (anchor) for each object orientation [58, 59], but this unnecessarily increases the computational burden and may introduce a large number of potential false-positive detections. We argue that the main underlying challenge in linking up the 2D and 3D domains lies in this representation of objects.”
也就是说,使用与坐标轴平行的anchor会带来额外的计算负担和潜在的大量的假阳性的检测:
1)额外计算负担的理解:如果使用anchor,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值