Betweenness Centrality 算法介绍与参考资料等
Betweenness Centrality是网络中心性重要的度量参数之一(下面简称BC)。在计算BC参数中,经典算法为参考1(1)中的Brander算法,而开源软件图JUNG库计算BC的算法复杂度为O(n^2 + nm);而 计算无全图的算法复杂度为O(nm),计算有权图算法的复杂度为O(nm + n^2 log n);讲到这里不得不提伟大的BGL库,其计算BC的算法复杂度为:
1.计算BC经典算法
(1)A Faster Algorithm for Betweenness Centrality, Ulrik Brandes, Journal of Mathematical Sociology, 2001, 25:2, pp. 163 - 177", "DOI: 10.1080/0022250X.2001.9990249"
(2)On variants of shortest-path betweenness centrality and their generic computation, Ulrik Brandes, Social Networks, vol 30:2", pp. 136 - 145, 2008, issn 0378-8733, "DOI: 10.1016/j.socnet.2007.11.001".
6. graph-stream计算BC方法 http://graphstream-project.org/api/gs-algo/org/graphstream/algorithm/BetweennessCentrality.html
8.使用BGL计算节点BC例子 http://xrigher.info/cpp/an-example-of-boost-betweenness-centrality/
10.斯坦福大学网络分析库 http://snap.stanford.edu/index.html
11.boost dijkstra算法例子 http://blog.csdn.net/ccsdu2004/article/details/3868648