MLLM(三)| BigModel平台正式上线Plus系列全家桶

       2024年8月28日,在ACM SIGKDD(国际数据挖掘与知识发现大会,KDD)会议现场,智谱AI重磅推出新一代全自研基座大模型GLM-4-Plus、图像/视频理解模型GLM-4V-Plus和文生图模型CogView-3-Plus。

1、模型介绍页:https://bigmodel.cn/dev/howuse/model,(包含最新模型的概要介绍)

2、GLM-4-Plus API文档更新:https://bigmodel.cn/dev/api#glm-4

3、GLM-4V-Plus API文档更新:https://bigmodel.cn/dev/api#glm-4v

4、CogView-3-Plus:https://bigmodel.cn/dev/api#cogview

一、GLM-4-Plus

       GLM-4-Plus 使用了大量模型辅助构造高质量合成数据以提升模型性能;利用 PPO 有效提升模型推理(数学、代码算法题等)表现,更好反应人类偏好。

1.1 特点:

        1)性能全面提升,长文本和复杂任务能力显著增强;

        2)支持128K上下文和多路Function Call;

1.2 在Benchmark上表现:

      语言文本能力方面,GLM-4-Plus 和 GPT-4o 及 405B 参数量的 Llama3.1 相当。

图片

     长文本能力比肩国际先进水平。通过更精准的长短文本数据混合策略,取得了更强的长文本的推理效果。

图片

1.3 在bigmodel.cn官网测试效果:

a)数字比大小

GLM-4-Plus

图片

GLM-4-Plus解决了3.14和3.5,谁比较大的大模型难题。

接下来,我们看一下通义千问的效果:

图片

再看一下gpt-4o的效果:

图片

gpt-4o在部分问题上表现不正确

<think>好的,我现在需要回答用户关于MLLM的问题。首先,用户询问的是MLLM的全称和应用。根据用户提供的引用资料,尤其是引用[5],里面提到mllm的全称是多模态LLM推理引擎,并且详细说明了它的应用场景和技术特点。我需要先确认这些信息是否准确,并确保引用正确。 接下来,我要整理MLLM的定义。全称是“多模态LLM推理引擎”,这里的LLM可能指的是“Large Language Model”(大语言模型)。多模态意味着它能够处理多种类型的数据输入,比如文本、图像等。根据引用[5],MLLM使用纯C/C++实现,没有依赖项,适合手机和边缘设备,这说明它的高效和轻量化。同时,它支持硬件加速指令,如ARM NEON和x86 AVX2,这对性能优化很重要。另外,它还支持4位和6位的整数量化技术,这有助于减少模型体积同时保持性能。 然后,关于应用场景,引用[5]提到MLLM是处理复杂AI任务的得力助手,特别是在手机和边缘设备上。这意味着它可以用于需要实时处理和多模态输入的场合,比如智能助手、图像识别、自动驾驶中的边缘计算等。可能还需要结合其他引用,比如引用[4]提到的LLaVA-UHD框架处理高分辨率图像,但用户的问题集中在MLLM上,所以重点应放在引用[5]。 需要确保回答结构清晰,分点说明全称、技术特点和应用场景。同时,要检查是否符合用户提供的格式要求:行内数学公式用$...$,独立公式单独成段,但这里可能不需要数学公式。引用标识要正确添加,比如引用[5]在相关段落末尾。 最后,生成相关问题时要围绕MLLM的技术、优化、应用场景等方面提问,确保问题相关且有助于用户进一步了解。例如,询问MLLM的技术优势、在边缘计算中的作用,或者与其他多模态模型的区别。 现在需要将这些整理成自然的中文回答,符合格式要求,正确引用,并生成相关问题。</think>### MLLM 的定义及应用 **MLLM** 全称为 **多模态LLM推理引擎**(Multimodal LLM Inference Engine),是一种专为多模态大模型设计的轻量化推理框架。其核心目标是高效运行多模态任务(如结合文本、图像等输入),尤其在资源受限的设备(如手机、边缘设备)上实现低延迟、高性能的推理[^5]。 #### 技术特点 1. **高效轻量化** MLLM 使用纯 **C/C++** 实现,无需依赖第方库,显著减少资源占用。通过 **4位/6位整数量化技术**,进一步压缩模型体积,同时保持推理精度。 2. **硬件加速优化** 支持 **ARM NEON** 和 **x86 AVX2** 等指令集,充分利用现代计算硬件的并行能力,提升运算效率。 3. **多模态支持** 可适配如 **Fuyu-8B** 等多模态大模型,处理图像、文本等混合输入的任务,例如图像描述生成、视觉问答等。 #### 应用场景 - **移动端AI助手**:在手机端实时运行复杂的多模态模型(如结合摄像头输入与自然语言交互)。 - **边缘计算**:在物联网设备或自动驾驶系统中,快速处理传感器数据(如图像、语音)并生成决策。 - **工业检测**:通过轻量化部署,在工厂设备上实现高精度视觉缺陷检测与文本报告生成。 ```cpp // 示例:MLLM 的量化处理逻辑(简化) void quantize_tensor(float* input, int8_t* output, int size, float scale) { for (int i = 0; i < size; i++) { output[i] = static_cast<int8_t>(input[i] * scale); } } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值