【人工智能】DeepSeek系列模型介绍

DeepSeek系列模型是由深度求索(DeepSeek)公司推出的大语言模型。

DeepSeek-R1 模型

DeepSeek-R1 模型包含 671B 参数,激活 37B,在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力,尤其在数学、代码、自然语言推理等任务上。

DeepSeek-R1-Distill

DeepSeek-R1-Distill 系列模型是基于知识蒸馏技术,通过使用 DeepSeek-R1 生成的训练样本对 Qwen、Llama 等开源大模型进行微调训练后,所得到的增强型模型。

DeepSeek-V3

DeepSeek-V3 为MoE 模型,671B 参数,激活 37B,在 14.8T Token 上进行了预训练,在长文本、代码、数学、百科、中文能力上表现优秀。

### DeepSeek 系列模型概述 DeepSeek系列模型由Lite、Pro和Max三个版本构成,各具特色的技术架构使其能够适应不同的应用场景需求。 #### DeepSeek-Lite 该版本拥有约10亿参数量,具备低延迟与高吞吐的特点,非常适合于需要快速响应的环境。其设计特别考虑到了资源受限设备的需求,可以轻松实现实时对话功能以及移动端应用程序集成[^2]。 ```python # 示例:使用DeepSeek-Lite进行简单问答交互 from deepseek_lite import LiteModel model = LiteModel() response = model.predict("什么是人工智能?") print(response) ``` #### DeepSeek-Pro 作为一款具有大约130亿参数规模的产品,此型号不仅保持了良好的综合性能表现,在面对多种任务处理方面也展现出色的能力。适用于诸如企业客户服务自动化解决方案或是大规模数据挖掘分析等领域。 ```python # 示例:利用DeepSeek-Pro执行客户咨询回复任务 from deepseek_pro import ProModel pro_model = ProModel() customer_query = "我的订单状态在哪里查看?" answer = pro_model.generate_response(customer_query) print(answer) ``` #### DeepSeek-Max 这是整个家族中最强大的成员之一,配备超过700亿个可训练参数。除了支持传统文本形式外,还扩展到图像识别等多种感官输入方式;尤其擅长解决涉及复杂逻辑推演的任务,如科学研究中的假设验证或者是金融市场上的高频交易策略制定等高级用途。 ```python # 示例:借助DeepSeek-Max完成跨领域研究项目辅助工作 from deepseek_max import MaxModel max_model = MaxModel() research_question = "量子计算对于密码学的影响有哪些?" insights = max_model.analyze(research_question, include_multimodal=True) for insight in insights: print(insight) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

本本本添哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值