pybullet+graspnet实现多相机点云融合与物体抓取(二)

本文详细介绍了如何在Windows环境下,通过Pybullet库结合GraspNet在仿真环境中获取抓取位姿的世界坐标,并处理了摄像机拍摄原理、随机物体生成及针对特定物体的抓取,通过seg图进行物体选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上篇文中,介绍了在windows上部署graspnet的一些细节,同时完成了在仿真环境以及现实世界中生成对点云的抓取姿态。本篇文章主要介绍如何获取抓取位姿的世界坐标,以完成抓取。

抓取效果参考视频:

基于pybullet+graspnet的抓取复现

下面介绍实现的具体细节:

1. 摄像机拍摄原理:

首先要明确pybullet里照片获取的原理,由视角矩阵计算函数可知:

viewMatrix = p.computeViewMatrix(
        cameraEyePosition=cameraPos,
        cameraTargetPosition=targetPos,
        cameraUpVector=cameraupPos,
        physicsClientId=0
    )  # 计算视角矩阵

需要有三个必要的参数:相机眼位置,相机目标位置和相机上向量组成。值得注意的是,相机的视角矩阵很可能与相机的位姿齐次矩阵不同。但是我们可以在相机的位姿矩阵和相机视角矩阵间建立联系,我使用这种办法:

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值