摘要:
onnx(Open Neural Network Exchange)主要用于部署,训练一般使用pytorch和tensorflow,等训练完成,我们需要模型转成onnx,用于部署在云或者边缘计算上。而为什么要要转成onnx模型呢,主要是因为onnx没有训练,只有推理,速度很快,而且目前大多数芯片都适配onnx模型,相当于一个通用莫模型,易部署,而且速度快。
onnx优势:
ONNX(Open Neural Network Exchange)是一种开放的深度学习模型交换格式,它具有以下优势:
跨平台支持:ONNX可以在不同的深度学习框架之间进行模型转换和交换,使得模型可以在不同的平台上进行部署和推理。
高效性:ONNX模型可以在不同的硬件平台上进行优化和部署,以实现高效的推理和低延迟。
灵活性:ONNX支持多种深度学习框架,如PyTorch、TensorFlow和Caffe等,可以方便地将已有的模型转换为ONNX格式。
易用性:ONNX提供了易于使用的API和工具,可以帮助开发者快速上手,快速构建和部署深度学习模型。
开源:ONNX是一个开源的深度学习模型交换格式,可以免费使用和修改,开发者可以根据自己的需求进行二次开发和定制。
可扩展性:ONNX支持分布式推理,可以将模型部署到多个设备上进行并行推理,以提高推理速度和吞吐量。
可视化工具:ONNX提供了可视化工具,如ONNX Runtime和Netron等,可以帮助开发者更好地理解和优化模型。
社区支持:ONNX有一个活跃的社区,开发者可以在社区中获取支持和帮助,也可以分享自己的经验和成果。
适用范围广:ONNX适用于多种应用场景,如图像识别、目标检测、人脸识别、自然语言处理等