2024华为OD机试真题【计算数组中心位置】【 Python】

这篇博客主要介绍了华为OD机试中的一道真题,要求找到数组的中心位置,即左侧元素乘积等于右侧元素乘积的下标。通过遍历数组并维护左右两侧元素的乘积,当两侧乘积相等时找到中心位置。文章提供了详细的解题思路和Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你一个整数数组nums,请计算数组的中心位置。数组的中心位置是数组的一个下标, 其左侧所有元素相乘的积等于右侧所有元素相乘的积。数组第一个元素的左侧积为1,最后一个元素的右侧积为1。 如果数组有多个中心位置,应该返回最靠近左边的那一个,如果数组不存在中心位置,返回-1。

输入

2 5 3 6 5 6

输出

3

题意解读

左侧积:该元素左侧所有元素的乘积;
右侧积:该元素右侧所有元素的乘积;

例如元素3,他的左侧积是 2*5 = 10. 他的右侧积是6*5*6 = 180
在这里插入图片描述

数组的中心位置指的是:该元素的 左侧积 等于 右侧积

解题思路

遍历整个数组,在遍历的过程中,计算当前元素左侧所有元素的乘积leftProduct )和右侧所有元素乘积rightProduct ),当leftProduct == rightProduct,表示找到了中心位置。

那么,如何初始化左侧积leftProduct 和右侧积 rightProduct 呢?leftProduct 初始值为 1,rightProduct初始值是所有元素相乘。

初始化完成后,开始遍历数组,从左到右的顺序遍历 。对于当前位置 i,首先更新左侧积(如果 i 不是第一个元素,那么左侧积为 leftProduct * nums[i-1]),然后更新右侧积(rightProduct / nums[i])。

如果左侧积和右侧积相等,则表示i就是中心点。

视频讲解

2023华为机试真题【计算数组中心位置】

示例代码(Python版本)


def find_center_index(nums):
    if len(nums) == 1:
        return 0

    n = len(nums)
    left_product = [1] * n
    right_product = [1] * n

    for i in range(1, n):
        left_product[i] = left_product[i - 1] * nums[i - 1]

    for i in range(n - 2, -1, -1):
        right_product[i] = right_product[i + 1] * nums[i + 1]

    for i in range(n):
        if left_product[i] == right_product[i]:
            return i

    return -1


nums = [int(x) for x in input().split()]
index = find_center_index(nums)
print(index)


### 华为OD中的数组与二叉树题目解析 #### 题目描述 给定一个整数数组 `nums`,其中第一个元素代表根节点的值,后续元素按照完全二叉树的方式存储。对于任意索引 `i` (从1开始),其左子节点位于位置 `2*i` 而右子节点则处于 `2*i + 1` 的位置[^2]。 #### 解决方案概述 为了处理这类问题,可以采用递归的方法遍历这棵由数组构建起来的二叉树结构,并执行所需的操作。下面将以 Python 实现为例展示如何创建一棵基于输入数组的二叉树并对其进行前序遍历: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def array_to_binary_tree(nums): if not nums or nums[0] is None: return None root = TreeNode(nums[0]) queue = [root] i = 1 while i < len(nums): current_node = queue.pop(0) # 左孩子 if i < len(nums) and nums[i] is not None: current_node.left = TreeNode(nums[i]) queue.append(current_node.left) i += 1 # 右孩子 if i < len(nums) and i < len(nums) and nums[i] is not None: current_node.right = TreeNode(nums[i]) queue.append(current_node.right) i += 1 return root def preorder_traversal(root): result = [] stack = [root] while stack: node = stack.pop() if node: result.append(node.val) stack.append(node.right) stack.append(node.left) return result if __name__ == "__main__": test_array = [1, 2, 3, 4, 5, 6, 7] tree_root = array_to_binary_tree(test_array) print(preorder_traversal(tree_root)) ``` 此代码片段展示了如何将一个列表转换成对应的二叉树对象以及怎样通过栈来实现非递归版本的先序遍历算法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codereasy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值