更多资料获取
📚 个人网站:ipengtao.com
大家好,今天为大家分享一个强大的 Python 库 - joblib。
Github地址:https://github.com/joblib/joblib
在数据科学和机器学习的实践中,效率和性能至关重要。Python的joblib库提供了一个简单的解决方案,用于对重复计算进行缓存,以及高效地保存和加载大型数据,特别适用于有大量重复计算且计算成本高昂的任务。这篇文章将详细介绍joblib库的安装、特性、基础及高级功能,并通过实际应用场景展示其实用性。
安装
joblib库可以通过pip安装,这是最直接的方法:
pip install joblib
这条命令将从Python包索引(PyPI)下载并安装joblib库。
特性
- 内存缓存:自动缓存函数的输出结果,避免重复计算。
- 高效存储:特别优化用于存储大型数组,使用joblib进行数据序列化和反序列化比Python标准的pickle更快。
- 并行计算支持:简化了并行计算的实现,能够轻松地在Python代码中实现多核处理。
基本功能
缓存函数结果
joblib提供了一个装饰器,可以用来缓存函数的计算结果,减少重复计算的时间。
from joblib import Memory
memory = Memory("cachedir", verbose=0)
@memory.cache
def expensive_computation(a, b):
print("Computing...")
return a * b * 123456789
# 第一次调用,会计算并缓存结果
result = expensive_computation(12345, 67890)
# 第二次调用,会直接从缓存读取结果
result = expensive_computation(12345, 67890)
数据序列化和加载
joblib也用于高效序列化大型数据集,特别是NumPy数组。
import numpy as np
from joblib import dump, load
array = np.random.randn(1000, 1000)
# 保存数组
dump(array, 'large_array.joblib')
# 加载数组
loaded_array = load('large_array.joblib')
高级功能
多核并行处理
joblib的Parallel
和delayed
工具使得在多核处理