如何实现限制用户 1 分钟内最多请求 1000 次?

文章精选推荐

1 JetBrains Ai assistant 编程工具让你的工作效率翻倍
2 Extra Icons:JetBrains IDE的图标增强神器
3 IDEA插件推荐-SequenceDiagram,自动生成时序图
4 BashSupport Pro 这个ides插件主要是用来干嘛的 ?
5 IDEA必装的插件:Spring Boot Helper的使用与功能特点
6 Ai assistant ,又是一个写代码神器

文章正文

要实现一个限制用户在 1 分钟内最多请求 1000 次的功能,可以使用一种常见的限流策略:令牌桶(Token Bucket)漏桶算法(Leaky Bucket),也可以通过简单的 滑动窗口计数 来实现。这里我们可以使用一个更简单的方式:计数器 + 时间窗口

1. 基本思路

我们可以在每个请求时检查当前时间窗口内的请求次数。每当用户发起请求时,我们:

  1. 检查当前时间与上次请求的时间间隔是否超过 1 分钟。
  2. 如果超过 1 分钟,则重置计数器(即将请求次数清零)。
  3. 如果当前时间窗口内的请求次数小于等于 1000,则允许请求并增加计数。
  4. 如果请求次数超过 1000 次,则拒绝请求,返回限流提示。

这种方式非常适合用来限制每个用户的请求频率。

2. 代码实现

我们可以使用一个 map 来记录每个用户的请求计数和时间戳。为了保证并发安全,通常需要使用 sync.Mutex 或者 sync.RWMutex 来保护共享数据。

package main

import (
	"fmt"
	"sync"
	"time"
)

// 用户请求信息结构体
type UserRequest struct {
	count    int       // 当前时间窗口内的请求次数
	lastTime time.Time // 上次请求时间
}

// 限流器
type RateLimiter struct {
	mu        sync.Mutex
	userLimit map[string]*UserRequest
	interval  time.Duration // 限流的时间窗口,1分钟
	maxRequests int         // 限制的最大请求次数
}

// 新建 RateLimiter
func NewRateLimiter(interval time.Duration, maxRequests int) *RateLimiter {
	return &RateLimiter{
		userLimit:  make(map[string]*UserRequest),
		interval:   interval,
		maxRequests: maxRequests,
	}
}

// 检查用户请求是否被允许
func (rl *RateLimiter) AllowRequest(userID string) bool {
	rl.mu.Lock()
	defer rl.mu.Unlock()

	// 获取当前时间
	now := time.Now()

	// 如果该用户第一次请求,初始化其请求信息
	if _, exists := rl.userLimit[userID]; !exists {
		rl.userLimit[userID] = &UserRequest{
			count:    1,
			lastTime: now,
		}
		return true
	}

	// 获取该用户的请求数据
	user := rl.userLimit[userID]

	// 计算时间差
	timeDiff := now.Sub(user.lastTime)

	// 如果超过了设定的时间窗口(例如 1 分钟),重置计数
	if timeDiff >= rl.interval {
		user.count = 1
		user.lastTime = now
		return true
	}

	// 如果请求次数小于最大限制,允许请求
	if user.count < rl.maxRequests {
		user.count++
		return true
	}

	// 如果请求次数已超出最大限制,拒绝请求
	return false
}

func main() {
	// 创建一个限流器,限制每个用户 1 分钟内最多请求 1000 次
	limiter := NewRateLimiter(1*time.Minute, 1000)

	// 模拟多个请求
	userID := "user1"

	// 模拟用户连续请求
	for i := 1; i <= 1100; i++ {
		if limiter.AllowRequest(userID) {
			fmt.Printf("Request %d for %s is allowed\n", i, userID)
		} else {
			fmt.Printf("Request %d for %s is denied (rate limit exceeded)\n", i, userID)
		}
		// 模拟请求间隔,避免过于频繁地触发限流
		time.Sleep(50 * time.Millisecond) // 50ms 请求间隔
	}
}

3. 代码解释

  • RateLimiter 结构体:这是一个限流器,负责存储用户的请求数据并检查是否符合限流规则。

    • userLimit:这是一个 map,键是 userID(用户的唯一标识),值是 UserRequest(记录该用户的请求计数和上次请求的时间戳)。
    • interval:限制时间窗口,这里是 1 分钟。
    • maxRequests:每个用户在指定时间窗口内允许的最大请求次数,这里是 1000 次。
  • AllowRequest 方法:该方法检查用户是否超过请求限制。

    • 如果当前时间距离上次请求已经超过了 1 分钟,则重置计数器。
    • 如果请求次数还未超过 1000 次,允许请求并增加计数。
    • 如果请求次数超过了限制,则拒绝请求。
  • 模拟请求main 函数模拟了一个用户连续发起请求的场景,每发起一次请求都会调用 AllowRequest 方法检查是否符合限流规则。如果符合规则,允许请求,否则拒绝。

4. 并发安全

在实际应用中,尤其是分布式系统中,通常需要处理并发请求。为了保证对 userLimit 这个共享资源的访问安全,我们使用了 sync.Mutex 来确保在同一时间只有一个 goroutine 能够操作限流数据。这避免了在多并发情况下数据的不一致问题。

在高并发场景下,如果需要提高性能,可以考虑使用更细粒度的锁(如 sync.RWMutex)或者在分布式环境下使用 Redis 等外部存储来处理限流。

5. 高效的改进方式

如果对性能有更高的要求,可以考虑使用更高效的数据结构,比如:

  • 滑动时间窗口:通过存储每次请求的时间戳,可以更加精细地控制每个用户在某个时间窗口内的请求次数。
  • Redis 限流:在分布式环境下,可以通过 Redis 实现更高效的限流,因为 Redis 提供了原子操作和过期时间机制,适合处理高并发的限流场景。

总结

通过上述的 计数器 + 时间窗口 方式,我们成功实现了对每个用户 1 分钟内最多请求 1000 次的限流功能。这个方案简单且易于理解,适用于大多数场景。在实际生产中,可能需要进一步优化限流策略,结合分布式存储和高效的算法来应对更高的并发需求。

### 微信登录接口实现IP限流 为了实现在微信登录接口中对同一IP地址每5分钟只允许请求限制,可以采用多种技术方案来达到这一目标。下面介绍一种基于Redis的技术解决方案。 #### 使用 Redis 实现 IP 限流 利用 Redis 的键过期功能和计数器机制能够高效地管理访问频率控制: 1. 当接收到一个来自特定 IP 地址的新请求时,在 Redis 中创建一个新的字符串类型的 key,key 名字可以根据业务需求定义,比如 `login_limit:{ip}`。 2. 将该 key 的 value 设定为任意值(如 "1"),表示此有效请求,并设置其生存时间为300秒(即5分钟)。 3. 如果再收到来自相同 IP 的新请求,则先尝试获取对应的 key 值。如果存在则返回错误提示信息给客户端说明当前时间段内不允许重复提交;如果不存在或已超时自动删除,则按照上述第1步操作重新记录新的请求时间戳。 以下是 Python Flask 应用程序中的具体代码示例[^1]: ```python from flask import request, jsonify import redis app = Flask(__name__) r = redis.Redis(host='localhost', port=6379) @app.route('/wechat/login') def wechat_login(): ip_address = request.remote_addr # Check if the IP has made a login attempt within last 5 minutes. if r.exists(f'login_limit:{ip_address}'): return jsonify({"error": "Too many requests"}), 429 try: # Process WeChat login logic here... # Set limit for this IP address to prevent further logins until TTL expires (in seconds). r.setex(name=f'login_limit:{ip_address}', time=300, value="1") return jsonify({"success": True}) except Exception as e: app.logger.error(e) return jsonify({"error": str(e)}), 500 ``` 这段代码展示了如何在处理微信登录的过程中加入简单的 IP 访问限制逻辑。当某个 IP 发起超过规定频请求时会立即被拦截并给出相应的响应状态码429 Too Many Requests以及友好的报错消息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值